大数据在出版业的应用推广面临的四大困难
当前出版业大数据标准化工作的路径是:首先对出版发行大数据工作进行定义,然后寻找已经有的一些现成标准基础,这些标准是可以被我们所利用的。这些工作完成后,我们需要建立一个数据流程的标准化模型。
通过对现有应用示范标准情况进行分析,一方面,已经发布和在研的一些标准,适用于出版业大数据环境,提供了一定的基础,但是缺乏系统的标准化整体规划;另一方面从标准分类上来看,大多集中在数据基础管理、采集、接口和存储等方面,而针对开放数据集、数据服务平台、数据分析、数据应用等产品和服务形态的标准缺失。
治理问题:亟待建立完整治理模式
数据治理的目的是提升出版业数据质量,保护数据隐私安全,保障数据合理应用,促进数据合法共享。出版行业应尽快出台大数据治理的相关办法,建立完整的大数据治理模式,指导出版业数据的获取、存储、互换以及重复利用;将数据库、服务平台、资源平台等产生的数据进行规范化采集与汇聚共享,形成全国一体化的大数据中心,共同参与到数据的治理与创新应用中。
应用问题:缺乏可推广模式是短板
如果说大数据的应用是大数据产业的商业价值终端,那么出版业知识服务体系构建与数据分析是当下行业公认的大数据产业的核心,是出版业大数据能够点石成金的两大利器。
——在知识服务体系构建方面:出版企业要认识到出版的核心价值取决于以内容为底蕴的知识、信息价值,这是出版的基本原理。出版业要善于利用大数据技术加强对信息、知识的序化、组织、整理能力,生产转化出可向受众传播的知识信息产品,构建未来新的核心竞争力。
——在数据分析方面:特别是在政府管理与公共服务体系建设层面,出版业数据分析工作需进一步扩大行业覆盖面,完善统计指标体系和数据监测系统,规范与出版统计有关的术语用法,健全数据信息公开制度,使数据信息更加科学、全面地反映行业发展态势,为政府和业界科学决策提供参考。
安全问题:确保合法使用,有利融合创新
对于传统出版业来说,大数据在相当长的时间内仍将是一个概念,但即使目前没有大体量的数据,出版业仍有必要为大数据实践做好准备,其中最大挑战之一是数据所有权、隐私保护等安全问题。
大数据的兴起为出版业重塑商业模式、预测市场风险等提供新契机的同时,也会引发滥用数据与侵犯隐私等法律、政策问题。特别是数据资产化后,数据治理——对数据的产生、收集、保存、维护、分析、应用的整个生命周期的管理将成为一个新的课题,其中数据安全与隐私保护便成为行业普遍担心的重要问题。
因此,相关部门有必要从数据安全的角度,对数据的开放程度、开放范围、开放对象都进行深入论证,以确保数据的使用是合法的,是有利于出版融合创新发展的。管理部门应对出版数据加强监管,制定数据运营商准入标准,授权运营资质。非官方机构在使用数据进行研究时,需要满足相关规定并取得相关许可,才能获得数据的使用权力。
数据分析咨询请扫描二维码
在当今数字化时代,数据已成为推动经济和技术发展的关键因素。企业和机构对数据科学与大数据专业人才的需求急剧增长。该领域涵盖 ...
2024-11-16金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13