spss中table容易被忽视的秘密
1、变量的类型:
注:想要变类型的话,直接用左键点变量,然后点右键(选择你想要的类型点左键)
2、output的数据形式设置,菜单操作见:(format是数据形式,Decimal是小数点的位数)
nnnn。简单数值。
nnnn%。在值末尾加上百分比符号。
自动。已定义变量显示格式,包括小数位数。
N=nnnn。在值前面显示 N=。在未显示摘要统计的表中,此格式可用于计数、有效 N 和总计 N。
(nnnn)。所有值都用括号括起。
(nnnn)(负值)。只有负值用括号括起。
(nnnn%)。所有值都用括号括起,并在值末尾加上一个百分比符号。
n,nnn.n。逗号格式。无论区域设置如何,均使用逗号作为分组分隔符,使用句点作为小数指示符。
n.nnn,n。点格式。无论区域设置如何,均使用句点作为分组分隔符,使用逗号作为小数指示符。
$n,nnn.n。美元格式。在值前面显示美元符号;无论区域设置如何,均使用逗号作为分组分隔符,使用句点作为小数指示符。
CCA、CCB、CCC、CCD、CCE。定制货币格式。在列表中显示每个定制货币的当前定义格式。在“选项”对话框(“编辑”菜单,“选项”)的“货币”选项卡中定义这些格式
3、常用的检验:
独立性检验 (卡方验证)。此选项为表生成独立性卡方检验,该表的行和列中至少同时有一个分类变量。还可以指定检验的 alpha 水平,alpha 水平应该是一个大于 0 且小于 1 的值。
比较列的平均值 (t-检验)。此选项为表生成列均值相等性成对检验,该表的列中至少有一个分类变量且行中至少有一个刻度变量。可以使用 Bonferroni 方法选择是否调整检验的 p 值。此外,还可以指定检验的 alpha 水平,alpha 水平应该是一个大于 0 且小于 1 的值。最后,虽然均值检验的方差始终只基于多重响应检验的比较类别;但对于序数分类变量,可只根据比较的类别或所有类别估计该变量。
比较列的比例 (z-检验)。此选项为表生成列比例相等性成对检验,该表的行和列中至少同时有一个类别变量。可以使用 Bonferroni 方法选择是否调整检验的 p 值。还可以指定检验的 alpha 水平,alpha 水平应该是一个大于 0 且小于 1 的值。
4、常用的统计量:
均值。算术平均值;总和除以个案数。
中位数。一个值,大于该值和小于该值的个案数各占一半,第 50 个百分位。
众数。出现频率最高的值。如果存在出现频率相等的值,则显示最小值。
最小值。最小(最低)值。
最大值。最大(最高)值。
缺失。缺失值(用户和系统缺失值)计数。
百分位数。可以包含第 5 个、第 25 个、第 75 个、第 95 个和/或第 99 个百分位。
范围。最大值和最小值之差。
均值的标准误。取自同一分布的样本与样本之间的均值之差的测量。它可以用来粗略地将观察到的均值与假设值进行比较(即,如果差与标准误的比值小于 –2 或大于 +2,则可以断定两个值不同)。
标准差。对围绕均值的离差的测量。在正态分布中,68% 的个案在均值的一个标准差范围内,95% 的个案在均值的两个标准差范围内。例如,在正态分布(方差的平方根)中,如果平均年龄为 45,标准差为 10,则 95% 的个案将处于 25 到 65 之间。
和。值的总和。
合计百分比。基于总和的百分比。适用于行和列(在子表中)、所有行和列(跨子表)、层、子表和整个表。
总计 N。无缺失值、用户缺失值和系统缺失值的计数。不包含手动排除的类别(用户缺失类别除外)中的个案。
有效 N。无缺失值的计数。不包含手动排除的类别(用户缺失类别除外)中的个案。
方差。对围绕均值的离差的测量,值等于与均值的差的平方和除以个案数减一。度量方差的单位是变量本身的单位的平方(标准差的平方)。
有效 N 百分比。即使在表中包含用户缺失类别,也会从简单百分比基数中移去具有用户缺失值的个案。
计数。每个表单元格中的个案数或多重响应集的响应数。
未加权的计数。每个表单元格中的未加权的个案数。仅在加权有效时,此统计量才与计数有区别。
列百分比。每一列中的百分比。子表的每一列中的百分比(简单百分比)的总和为 100%。通常仅在具有分类行 变量时,列百分比才有用。
行百分比。每一行中的百分比。子表的每一行中的百分比(简单百分比)的总和为 100%。通常仅在具有分类列 变量时,行百分比才有用。
分层行和分层列百分比。嵌套表中所有子表的行或列百分比(简单百分比)的总和为 100%。如果表包含层,则每个层中所有嵌套子表的行或列百分比的总和为 100%。
层百分比。每个层中的百分比。对于简单百分比,当前可见层中的单元格百分比的总和为 100%。如果没有任何层变量,则此百分比等于表百分比。
表百分比。每个单元格中的百分比基于整个表。所有单元格百分比都基于相同的个案总数且总和为 100%(简单百分比)。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30数据分析师在现代企业中扮演着关键角色,他们的工作内容不仅丰富多样,还对企业的决策和发展起着重要的作用。正如一个经验丰富的 ...
2024-12-29