用大数据建设危险品物流安全平台
危险品在运输与仓储过程中,往往会发生爆炸、泄漏和污染等事故。据不完全统计,仅去年一年就发生了近百起大大小小的生产安全责任事故,造成许多生命的消逝和巨额财产的损失。“百年累之,一朝毁之”,危险品的物流安全问题成为悬在头上的达摩克利斯之剑,有针对性地进行系统有效的预防、预警、应急处置与善后处理,便成为危险品物流发展中的当务之急。
按照维基的解释,危险品是指在使用或者运输、仓储过程中,会产生对环境、健康、安全及财产造成危害的物质,按照化学性质一般分为爆炸物和引爆媒介物、易燃性和毒性气体、易燃性液体、易燃性固态、氧化媒介物及有机过氧化物、毒性及感染性物质、放射性物质、腐蚀性物质和其他危险性物质等九类。
随着我国经济进入中高速增长,对高端化工产品的市场需求持续增长,危险品物流开始步入高速增长期。据统计,2015年全国危险品运输量约为10亿吨,危险品道路运输企业约为1.1万户,运输车辆约31万辆,从业人员约120万人,而每年运输量增速达10%,居全球第二位,且可能很快超过美国成为全球最大的危险品运输国家。
危险品物流的迅猛发展客观要求各管理部门以更快的速度建立起更加完善的危险品安全管理体系。
诚然,我国政府和相关管理部门已陆续建立了一系列规范危险品物流运作的法律、法规、规定和标准,一定程度上提高了危险品物流的安全系数。但近几年来,每年都会发生超过百起安全事故,发生率远高于欧美发达国家,让人们开始质疑这些法律法规和标准的科学性。这其中,既有专业水平不足的问题,也有基础设施条件差的问题,既有管理部门过多而协同管理不足的问题,也有信息化程度低导致监管能力差的问题,不一而足,但核心还是缺乏整体规划和系统建构。
危险品物流中的多头管理是其中最严重的问题之一。交通、公安、质检、安监、工商、环保、卫生、税务、海关等部门分头管理、职能交叉,形成的所谓闭环管理机制,容易存在争利时一哄而上而出现事故时则诿过推卸管理责任的可能,但目前还难以形成一个统一管理的体系,只能依靠技术工具来实现协同管理。
其中,大数据就是提高部门之间协同管理最便利的工具之一。所谓大数据,是指涉及的数据量规模巨大,无法通过传统数据库软件实现获取、存储、管理和分析的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低等特征。大数据的目的,是要把这些分布在各区域、各行业、各节点的非结构化或半结构化且含有意义的数据,依托云计算的分布式数据库和云存储进行专业化处理,实现深度数据挖掘。
危险品物流安全管理的大数据化可谓恰逢其时。在中国,2015被业界称为大数据元年,据调查显示,中国大数据市场已达到115.9亿元。2015年9月,国务院发布了《促进大数据发展行动纲要》,明确从顶层设计中解决政府数据开放共享不足、创新应用领域不广等问题;“十三五”规划也明确提出实施国家大数据战略,到2017年底形成跨部门数据资源共享共用格局。
实际上,危险品物流管理体系的主要目标是安全,其次才是效率;而危险品物流运营企业关注的主要是效益,安全则是约束的门槛。因此,利用大数据实现物流安全管理的需求在于各级管理部门,特别是很多部门还都有非常庞大的数据在手。例如,储存在交通部门的运输工具安全管理、从业人员资格等数据;储存在公安部门的危化品安全管理、剧毒化学品购买许可证、道路运输通行证、运输车辆的道路管理等数据;储存在质检部门的危化品及其包装物/容器的工业产品生产许可证以及储存在安监部门的危化品安全生产许可证、仓储危化品建设项目的安全条件审查、危化品安全使用许可证等数据。
而通过各个区域、各级政府部门建立的大数据平台,可以高度共享协同以往分散存储的安全管理信息数据,从管理源头上实时杜绝任何不符合危险品安全仓储和运输条件的企业、设施装备、从业人员以至安全管理体系,有效规避多头管理中的客户信息数据冲突,让法律法规和标准在企业管理中落地生根。
当然,单纯依靠危险品物流运营企业的自律还难以保证全系统的安全,可以利用大数据进行深度数据挖掘,从危险品的采购、生产制造、包装、分拣、储存、运输、配送等全供应链环节上实现企业级、区域级和国家级的安全风险识别、控制和规避。利用大数据建立强大的分级危险品物流安全监控中心,实时对所有危险品的生产、仓储和运输,实施严格的全流程信息管理,包括货品及货物盛装物的RFID识别标签、车载移动终端、仓储终端、作业人员识别标签等,并建立基于风险识别的预警和报警系统,这有利于危险品物流安全事故发生的应急处置和救援互助。
大数据依赖于各个分散在区域、部门和企业内部的数据库,也取决于各区域、各部门和各企业的信息化水平。不过,借国家大数据建设的东风,首先可以在已有庞大数据源的各区域、各管理部门构建大数据平台;其次可以利用危险品物流企业利润相对较高的优势,强力推行企业级信息化及智能化。大数据不仅仅是作用于危险品物流的安全管理,还能作为物流企业经营获利的利器,在危险品分级标准逐步科学合理的基础上,可以利用大数据实现的全供应链物流整体优化带来效益与利润,让企业乐于建设自身的数据平台,从而实现大数据在危险品物流管理部门与危险品物流运营企业间的融合共享。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 8-1 Pandas 数据重塑 - 数据变形 数据重塑(Reshaping) 数据重塑,顾名思义就是给数据做各种变 ...
2024-11-26统计学基础 - 理解统计学的基本概念和方法是数据分析师必备的技能之一。统计学为他们提供了处理数据、进行推断和建模的基础。 数 ...
2024-11-25数据分析师在如今信息爆炸的时代扮演着至关重要的角色。他们不仅需要具备扎实的数据分析技能,还需要不断学习和适应不断发展的技 ...
2024-11-25数据分析师的工作职责涉及多个关键方面,从数据的获取到处理、分析再到可视化,旨在为企业的决策提供有力支持。让我们深入了解数 ...
2024-11-25数据分析师:洞察力量的引擎 数据分析师的兴起 数据分析师行业目前正处于快速发展阶段,市场需求持续增长,薪资水平也有所提升。 ...
2024-11-25数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-25数据分析是当今社会中不可或缺的一项技能,涵盖了广泛的工具和技术。其中,掌握各种数据处理函数对于数据分析师至关重要。本文将 ...
2024-11-25“大数据治理”是一个涵盖广泛的复杂概念,其核心在于确保大规模、多样化的数据资源能够被有效管理和利用。不仅涉及数据的采集、 ...
2024-11-25一、引言 背景介绍 随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会的重要资产。大数据的兴起不仅推动了各行各业 ...
2024-11-25《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22