用大数据建设危险品物流安全平台
危险品在运输与仓储过程中,往往会发生爆炸、泄漏和污染等事故。据不完全统计,仅去年一年就发生了近百起大大小小的生产安全责任事故,造成许多生命的消逝和巨额财产的损失。“百年累之,一朝毁之”,危险品的物流安全问题成为悬在头上的达摩克利斯之剑,有针对性地进行系统有效的预防、预警、应急处置与善后处理,便成为危险品物流发展中的当务之急。
按照维基的解释,危险品是指在使用或者运输、仓储过程中,会产生对环境、健康、安全及财产造成危害的物质,按照化学性质一般分为爆炸物和引爆媒介物、易燃性和毒性气体、易燃性液体、易燃性固态、氧化媒介物及有机过氧化物、毒性及感染性物质、放射性物质、腐蚀性物质和其他危险性物质等九类。
随着我国经济进入中高速增长,对高端化工产品的市场需求持续增长,危险品物流开始步入高速增长期。据统计,2015年全国危险品运输量约为10亿吨,危险品道路运输企业约为1.1万户,运输车辆约31万辆,从业人员约120万人,而每年运输量增速达10%,居全球第二位,且可能很快超过美国成为全球最大的危险品运输国家。
危险品物流的迅猛发展客观要求各管理部门以更快的速度建立起更加完善的危险品安全管理体系。
诚然,我国政府和相关管理部门已陆续建立了一系列规范危险品物流运作的法律、法规、规定和标准,一定程度上提高了危险品物流的安全系数。但近几年来,每年都会发生超过百起安全事故,发生率远高于欧美发达国家,让人们开始质疑这些法律法规和标准的科学性。这其中,既有专业水平不足的问题,也有基础设施条件差的问题,既有管理部门过多而协同管理不足的问题,也有信息化程度低导致监管能力差的问题,不一而足,但核心还是缺乏整体规划和系统建构。
危险品物流中的多头管理是其中最严重的问题之一。交通、公安、质检、安监、工商、环保、卫生、税务、海关等部门分头管理、职能交叉,形成的所谓闭环管理机制,容易存在争利时一哄而上而出现事故时则诿过推卸管理责任的可能,但目前还难以形成一个统一管理的体系,只能依靠技术工具来实现协同管理。
其中,大数据就是提高部门之间协同管理最便利的工具之一。所谓大数据,是指涉及的数据量规模巨大,无法通过传统数据库软件实现获取、存储、管理和分析的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低等特征。大数据的目的,是要把这些分布在各区域、各行业、各节点的非结构化或半结构化且含有意义的数据,依托云计算的分布式数据库和云存储进行专业化处理,实现深度数据挖掘。
危险品物流安全管理的大数据化可谓恰逢其时。在中国,2015被业界称为大数据元年,据调查显示,中国大数据市场已达到115.9亿元。2015年9月,国务院发布了《促进大数据发展行动纲要》,明确从顶层设计中解决政府数据开放共享不足、创新应用领域不广等问题;“十三五”规划也明确提出实施国家大数据战略,到2017年底形成跨部门数据资源共享共用格局。
实际上,危险品物流管理体系的主要目标是安全,其次才是效率;而危险品物流运营企业关注的主要是效益,安全则是约束的门槛。因此,利用大数据实现物流安全管理的需求在于各级管理部门,特别是很多部门还都有非常庞大的数据在手。例如,储存在交通部门的运输工具安全管理、从业人员资格等数据;储存在公安部门的危化品安全管理、剧毒化学品购买许可证、道路运输通行证、运输车辆的道路管理等数据;储存在质检部门的危化品及其包装物/容器的工业产品生产许可证以及储存在安监部门的危化品安全生产许可证、仓储危化品建设项目的安全条件审查、危化品安全使用许可证等数据。
而通过各个区域、各级政府部门建立的大数据平台,可以高度共享协同以往分散存储的安全管理信息数据,从管理源头上实时杜绝任何不符合危险品安全仓储和运输条件的企业、设施装备、从业人员以至安全管理体系,有效规避多头管理中的客户信息数据冲突,让法律法规和标准在企业管理中落地生根。
当然,单纯依靠危险品物流运营企业的自律还难以保证全系统的安全,可以利用大数据进行深度数据挖掘,从危险品的采购、生产制造、包装、分拣、储存、运输、配送等全供应链环节上实现企业级、区域级和国家级的安全风险识别、控制和规避。利用大数据建立强大的分级危险品物流安全监控中心,实时对所有危险品的生产、仓储和运输,实施严格的全流程信息管理,包括货品及货物盛装物的RFID识别标签、车载移动终端、仓储终端、作业人员识别标签等,并建立基于风险识别的预警和报警系统,这有利于危险品物流安全事故发生的应急处置和救援互助。
大数据依赖于各个分散在区域、部门和企业内部的数据库,也取决于各区域、各部门和各企业的信息化水平。不过,借国家大数据建设的东风,首先可以在已有庞大数据源的各区域、各管理部门构建大数据平台;其次可以利用危险品物流企业利润相对较高的优势,强力推行企业级信息化及智能化。大数据不仅仅是作用于危险品物流的安全管理,还能作为物流企业经营获利的利器,在危险品分级标准逐步科学合理的基础上,可以利用大数据实现的全供应链物流整体优化带来效益与利润,让企业乐于建设自身的数据平台,从而实现大数据在危险品物流管理部门与危险品物流运营企业间的融合共享。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30数据分析师在现代企业中扮演着关键角色,他们的工作内容不仅丰富多样,还对企业的决策和发展起着重要的作用。正如一个经验丰富的 ...
2024-12-29