上一篇介绍了关联规则挖掘的一些基本概念和经典的Apriori算法,Aprori算法利用频繁集的两个特性,过滤了很多无关的集合,效率提高不少,但是我们发现Apriori算法是一个候选消除算法,每一次消除都需要扫描一次所有数据记录,造成整个算法在面临大数据集时显得无能为力。今天我们介绍一个新的算法挖掘频繁项集,效率比Aprori算法高很多。
FpGrowth算法通过构造一个树结构来压缩数据记录,使得挖掘频繁项集只需要扫描两次数据记录,而且该算法不需要生成候选集合,所以效率会比较高。我们还是以上一篇中用的数据集为例:
TID | Items |
T1 | {牛奶,面包} |
T2 | {面包,尿布,啤酒,鸡蛋} |
T3 | {牛奶,尿布,啤酒,可乐} |
T4 | {面包,牛奶,尿布,啤酒} |
T5 |
{面包,牛奶,尿布,可乐} |
一、构造FpTree
FpTree是一种树结构,树结构定义如下:
树的每一个结点代表一个项,这里我们先不着急看树的结构,我们演示一下FpTree的构造过程,FpTree构造好后自然明白了树的结构。假设我们的最小绝对支持度是3。
Step 1:扫描数据记录,生成一级频繁项集,并按出现次数由多到少排序,如下所示:
Item | Count |
牛奶 | 4 |
面包 | 4 |
尿布 | 4 |
啤酒 | 3 |
可以看到,鸡蛋和可乐没有出现在上表中,因为可乐只出现2次,鸡蛋只出现1次,小于最小支持度,因此不是频繁项集,根据Apriori定理,非频繁项集的超集一定不是频繁项集,所以可乐和鸡蛋不需要再考虑。
Step 2:再次扫描数据记录,对每条记录中出现在Step 1产生的表中的项,按表中的顺序排序。初始时,新建一个根结点,标记为null;
1)第一条记录:{牛奶,面包},按Step 1表过滤排序得到依然为{牛奶,面包},新建一个结点,idName为{牛奶},将其插入到根节点下,并设置count为1,然后新建一个{面包}结点,插入到{牛奶}结点下面,插入后如下所示:
2)第二条记录:{面包,尿布,啤酒,鸡蛋},过滤并排序后为:{面包,尿布,啤酒},发现根结点没有包含{面包}的儿子(有一个{面包}孙子但不是儿子),因此新建一个{面包}结点,插在根结点下面,这样根结点就有了两个孩子,随后新建{尿布}结点插在{面包}结点下面,新建{啤酒}结点插在{尿布}下面,插入后如下所示:
3)第三条记录:{牛奶,尿布,啤酒,可乐},过滤并排序后为:{牛奶,尿布,啤酒},这时候发现根结点有儿子{牛奶},因此不需要新建结点,只需将原来的{牛奶}结点的count加1即可,往下发现{牛奶}结点有一个儿子{尿布},于是新建{尿布}结点,并插入到{牛奶}结点下面,随后新建{啤酒}结点插入到{尿布}结点后面。插入后如下图所示:
4)第四条记录:{面包,牛奶,尿布,啤酒},过滤并排序后为:{牛奶,面包,尿布,啤酒},这时候发现根结点有儿子{牛奶},因此不需要新建结点,只需将原来的{牛奶}结点的count加1即可,往下发现{牛奶}结点有一个儿子{面包},于是也不需要新建{面包}结点,只需将原来{面包}结点的count加1,由于这个{面包}结点没有儿子,此时需新建{尿布}结点,插在{面包}结点下面,随后新建{啤酒}结点,插在{尿布}结点下面,插入后如下图所示:
5)第五条记录:{面包,牛奶,尿布,可乐},过滤并排序后为:{牛奶,面包,尿布},检查发现根结点有{牛奶}儿子,{牛奶}结点有{面包}儿子,{面包}结点有{尿布}儿子,本次插入不需要新建结点只需更新count即可,示意图如下:
按照上面的步骤,我们已经基本构造了一棵FpTree(Frequent Pattern Tree),树中每天路径代表一个项集,因为许多项集有公共项,而且出现次数越多的项越可能是公公项,因此按出现次数由多到少的顺序可以节省空间,实现压缩存储,另外我们需要一个表头和对每一个idName相同的结点做一个线索,方便后面使用,线索的构造也是在建树过程形成的,但为了简化FpTree的生成过程,我没有在上面提到,这个在代码有体现的,添加线索和表头的Fptree如下:
至此,整个FpTree就构造好了,在下面的挖掘过程中我们会看到表头和线索的作用。
二、利用FpTree挖掘频繁项集
FpTree建好后,就可以进行频繁项集的挖掘,挖掘算法称为FpGrowth(Frequent Pattern Growth)算法,挖掘从表头header的最后一个项开始。
1)此处即从{啤酒}开始,根据{啤酒}的线索链找到所有{啤酒}结点,然后找出每个{啤酒}结点的分支:{牛奶,面包,尿布,啤酒:1},{牛奶,尿布,啤酒:1},{面包,尿布,啤酒:1},其中的“1”表示出现1次,注意,虽然{牛奶}出现4次,但{牛奶,面包,尿布,啤酒}只同时出现1次,因此分支的count是由后缀结点{啤酒}的count决定的,除去{啤酒},我们得到对应的前缀路径{牛奶,面包,尿布:1},{牛奶,尿布:1},{面包,尿布:1},根据前缀路径我们可以生成一颗条件FpTree,构造方式跟之前一样,此处的数据记录变为:
TID | Items |
T1 | {牛奶,面包,尿布} |
T2 | {牛奶,尿布} |
T3 | {面包,尿布} |
绝对支持度依然是3,构造得到的FpTree为:
构造好条件树后,对条件树进行递归挖掘,当条件树只有一条路径时,路径的所有组合即为条件频繁集,假设{啤酒}的条件频繁集为{S1,S2,S3},则{啤酒}的频繁集为{S1+{啤酒},S2+{啤酒},S3+{啤酒}},即{啤酒}的频繁集一定有相同的后缀{啤酒},此处的条件频繁集为:{{},{尿布}},于是{啤酒}的频繁集为{{啤酒}{尿布,啤酒}}。
2)接下来找header表头的倒数第二个项{尿布}的频繁集,同上可以得到{尿布}的前缀路径为:{面包:1},{牛奶:1},{牛奶,面包:2},条件FpTree的数据集为:
TID | Items |
T1 | {面包} |
T2 | {牛奶} |
T3 | {牛奶,面包} |
T4 | {牛奶,面包} |
注意{牛奶,面包:2},即{牛奶,面包}的count为2,所以在{牛奶,面包}重复了两次,这样做的目的是可以利用之前构造FpTree的算法来构造条件Fptree,不过这样效率会降低,试想如果{牛奶,面包}的count为20000,那么就需要展开成20000条记录,然后进行20000次count更新,而事实上只需要对count更新一次到20000即可。这是实现上的优化细节,实践中当注意。构造的条件FpTree为:
这颗条件树已经是单一路径,路径上的所有组合即为条件频繁集:{{},{牛奶},{面包},{牛奶,面包}},加上{尿布}后,又得到一组频繁项集{{尿布},{牛奶,尿布},{面包,尿布},{牛奶,面包,尿布}},这组频繁项集一定包含一个相同的后缀:{尿布},并且不包含{啤酒},因此这一组频繁项集与上一组不会重复。
重复以上步骤,对header表头的每个项进行挖掘,即可得到整个频繁项集,可以证明(严谨的算法和证明可见参考文献[1]),频繁项集即不重复也不遗漏。
程序的实现代码还是放在我的github上,这里看一下运行结果:
另外我下载了一个购物篮的数据集,数据量较大,测试了一下FpGrowth的效率还是不错的。FpGrowth算法的平均效率远高于Apriori算法,但是它并不能保证高效率,它的效率依赖于数据集,当数据集中的频繁项集的没有公共项时,所有的项集都挂在根结点上,不能实现压缩存储,而且Fptree还需要其他的开销,需要存储空间更大,使用FpGrowth算法前,对数据分析一下,看是否适合用FpGrowth算法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10推荐学习书籍 《CDA一级教材》在线电子版正式上线CDA网校,为你提供系统、实用、前沿的学习资源,助你轻松迈入数据分析的大门! ...
2025-03-07在数据驱动决策的时代,掌握多样的数据分析方法,就如同拥有了开启宝藏的多把钥匙,能帮助我们从海量数据中挖掘出关键信息,本 ...
2025-03-06在备考 CDA 考试的漫漫征途上,拥有一套契合考试大纲的优质模拟题库,其重要性不言而喻。它恰似黑夜里熠熠生辉的启明星,为每一 ...
2025-03-05“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关 ...
2025-03-04