前面几篇介绍了关联规则的一些基本概念和两个基本算法,但实际在商业应用中,写算法反而比较少,理解数据,把握数据,利用工具才是重要的,前面的基础篇是对算法的理解,这篇将介绍开源利用数据挖掘工具weka进行管理规则挖掘。
weka数据集格式arff
arff标准数据集简介
weka的数据文件后缀为arff(Attribute-Relation File Format,即属性关系文件格式),arff文件分为注释、关系名、属性名、数据域几大部分,注释用百分号开头%,关系名用@relation申明,属性用@attribute什么,数据域用@data开头,看这个示例数据集(安装weka后,可在weka的安装目录/data下找到weather.numeric.arff):
当数据是数值型,在属性名的后面加numeric,如果是离散值(枚举值),就用一个大括号将值域列出来。@data下一行后为数据记录,数据为矩阵形式,即每一个的数据元素个数相等,若有缺失值,就用问号?表示。
arff稀疏数据集
我们做关联规则挖掘,比如购物篮分析,我们的购物清单数据肯定是相当稀疏的,超市的商品种类有上10000种,而每个人买东西只会买几种商品,这样如果用矩阵形式表示数据显然浪费了很多的存储空间,我们需要用稀疏数据表示,看我们的购物清单示例(basket.txt):
数据集的每一行表示一个去重后的购物清单,进行关联规则挖掘时,我们可以先把商品名字映射为id号,挖掘的过程只有id号就是了,到规则挖掘出来之后再转回商品名就是了,retail.txt是一个转化为id号的零售数据集,数据集的前面几行如下:
这个数据集的商品有16469个,一个购物的商品数目远少于商品中数目,因此要用稀疏数据表,weka支持稀疏数据表示,但我在运用apriori算法时有问题,先看一下weka的稀疏数据要求:稀疏数据和标准数据的其他部分都一样,唯一不同就是@data后的数据记录,示例如下(basket.arff):
可以看到
表示为了:
稀疏数据的表示格式为:{<属性列号><空格><值>,...,<属性列号><空格><值>},注意每条记录要用大括号,属性列号不是id号,属性列号是从0开始的,即第一个@attribute 后面的属性是第0个属性,T表示数据存在。
规则挖取
我们先用标准数据集normalBasket.arff[1]试一下,weka的apriori算法和FPGrowth算法。
1、安装好weka后,打开选择Explorer
2、打开文件
3、选择关联规则挖掘,选择算法
4、设置参数
参数主要是选择支持度(lowerBoundMinSupport),规则评价机制metriType(见上一篇)及对应的最小值,参数设置说明如下[2]:
1. car 如果设为真,则会挖掘类关联规则而不是全局关联规则。
2. classindex 类属性索引。如果设置为-1,最后的属性被当做类属性。
3. delta 以此数值为迭代递减单位。不断减小支持度直至达到最小支持度或产生了满足数量要求的规则。
4. lowerBoundMinSupport 最小支持度下界。
5. metricType 度量类型。设置对规则进行排序的度量依据。可以是:置信度(类关联规则只能用置信度挖掘),提升度(lift),杠杆率(leverage),确信度(conviction)。
在 Weka中设置了几个类似置信度(confidence)的度量来衡量规则的关联程度,它们分别是:
a) Lift : P(A,B)/(P(A)P(B)) Lift=1时表示A和B独立。这个数越大(>1),越表明A和B存在于一个购物篮中不是偶然现象,有较强的关联度.
b) Leverage :P(A,B)-P(A)P(B)Leverage=0时A和B独立,Leverage越大A和B的关系越密切
c) Conviction:P(A)P(!B)/P(A,!B) (!B表示B没有发生) Conviction也是用来衡量A和B的独立性。从它和lift的关系(对B取反,代入Lift公式后求倒数)可以看出,这个值越大, A、B越关联。
6. minMtric 度量的最小值。
7. numRules 要发现的规则数。
8. outputItemSets 如果设置为真,会在结果中输出项集。
9. removeAllMissingCols 移除全部为缺省值的列。
10. significanceLevel 重要程度。重要性测试(仅用于置信度)。
11. upperBoundMinSupport 最小支持度上界。 从这个值开始迭代减小最小支持度。
12. verbose 如果设置为真,则算法会以冗余模式运行。
设置好参数后点击start运行可以看到Apriori的运行结果:
FPGrowth运行的结果是一样的:
每条规则都带有出现次数、自信度、相关度等数值。
下面测一个大一点的数据集retail.arff[1](retail.arff是由retail.txt转化而来,为了不造成误解,我在id好前加了一个"I",比如2变为I2),这个数据用的稀疏数据表示方法,数据记录有88162条,用Apriori算法在我的2G电脑上跑不出来,直接内存100%,用FPGrowth可以轻松求出,看一下运行结果:
其他参数可以自己调整比较。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-23“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31