如何妙用“小数据”
营销的最高成就是与客户建立一对一的联系——为每个独立买家或潜在客户提供最相关的信息和产品——而大数据则很难帮你实现这样的私人沟通。企业需要有能力收集和利用每个客户的个人喜好和行为。换句话说,他们同样需要“小数据”。
“小数据”被定义为客户的特定信息, 如客户的购买历史和其他被企业CRM系统定期收集的信息,以及客户的偏好和行为的信息,这可以从客户日常使用的技术产品中获得,比如他使用智能手机还是其他可穿戴科技设备来网站访问,社交媒体动态。
从事小数据使用与分析研究的企业信息管理公司Open Text产品营销与创新副总裁Allen Boned指出:大数据从数不清的人或电脑系统中获取数据,试图创造某一年龄组或某一特定人群的专属模型;而小数据是与某一个人直接相关的个性化数据,帮助营销人员理解个人的微妙行为与需求,并针对这些需求,实时奉上个性化的营销信息或产品。
小数据还包括从带有传感器的设备上收集的设备数据,与设备环境和设备使用带来的本地化信息。换句话说,小数据是连续的、实时的物联网输出。“小数据从本质上讲是物联网的操作系统,”Allen Boned说,“你有很多相互连接的设备,每一个都有很多本地信息,在某些情况下,就是相对简单的信息。”这意味着小数据对于日常的市场营销工作来说更易于操作,他说。
关键是要清楚如何将大数据采集自目标受众的洞见与通过小数据分析获得的设备特定信息有效结合,全面了解目标受众的情况。下面是一些需要重点考虑的因素:
1. 定义你的目标。小数据可以让营销人员细致的观察现有和潜在的客户,不仅了解他们正在做什么,而且了解他们为什么这样做以及他们怎样做到的。 “一种理解是客户轮廓构建,” Bonde说。 “我们如何创造更完整的客户形象 ?当你开始回答这个问题,它会触及更大的问题,这就是,在哪里找到合适的小数据使用?”
数据管理和分析公司Prosper Technologies的CEO,Gary Drenik补充说:“这需要企业有能力整合不同的数据源,加以分析,以应对你面临的问题……小数据是一项选择相关的数据并加以分析的工作,你可以利用其来运作你的业务,推出或调整市场活动。优质的小数据出乎人们的医疗,”他说,“人很难搞清楚自己想要什么,所以营销人员愿意做调研,并在此基础上做假设。小数据的作用是针对个人的,帮助企业更好的了解个人。营销人员真要回答的问题不是‘这是什么?’而应该是‘为什么会有这样的结果?’以及‘我们能否改变他们?’”
2. 利用你已经拥有的信息。“小数据的世界就是利用你周围现成的数据,” Bonde说。“举例来说,使用销售终端的数据或你的网站点击量……这意味着采用普通人能够理解的度量标准和工具, 而非只有数据科学家和统计学家才能理解。这也是小型企业一贯的做法。”小企业客户群比较小, 所以他们能更好挖掘个人客户的需求和喜好, 甚至可以通过非正式的方式更好服务每一个客户, 比方说你常去的煎饼果子摊老板可能会为你多加一个蛋一样。
专家指出,只要企业能搭建一个紧凑的小数据分析战略,它们就可以从获取的客户具体洞见中受益。例如,“我有很多客户希望真正了解其在数字营销领域的努力是否有所回报,”内容营销分析公司 Content Science的首席执行官Colleen Jones(她多年来一直致力于用小数据帮助企业打造战略型内容营销活动)表示,“与大数据相比, 小数据更容易获取,汇报给营销人员和以及其内容营销团队, 方便他们理解和采取行动”, 因为小数据收集是有选择的从客户标准报告与社交媒体监测中收集到的。
3. 由小到大的顺序解决问题。Bonde指出,对于还不知道如何驾驭大数据的营销人员来说,小数据的易获取性和易用性是绝好的消息。“银行、政府和大公司将继续投资大数据,但很多人会意识到他们已经拥有的手边数据的价值,并使其形象化,可操作化。那头大数据还没结婚呢,这厢小数据已经生二胎了,效益快慢高下立判。”他说, “如果你还没有开始在大数据领域投资,又担心落后的话,小数据是个很好的选择。因为你可以通过专注于手边小数据的分析,获得价值和有益的启示。”
数据分析咨询请扫描二维码
理论部分 - 基础数学理论: - 学生首先需要掌握数学的基础理论,包括数学分析、高等代数、几何学、常微分方程等。 - 这些课程 ...
2024-11-26在选择数据科学和大数据技术专业时,了解不同领域的职责和技能需求至关重要。数据治理工程师是这一领域中不可或缺的角色之一,承 ...
2024-11-26基础课程 统计学基础 - 统计学是数据分析的基石,包括概率、假设检验、回归分析等基本知识,有助于理解数据背后的意义。 - ...
2024-11-26数据分析是一门综合性学科,涉及多个领域的知识和技能。要全面掌握数据分析,需要学习以下内容: 基础课程 统计学基础:统计学 ...
2024-11-26数据治理工程师在当今信息时代扮演着至关重要的角色,负责确保组织内数据的质量、安全性和可用性。他们需要具备一系列技能和才能 ...
2024-11-26在当今数字化时代,数据被誉为新的石油,是企业最有价值的资产之一。因此,建立有效的数据战略规划对于企业的成功至关重要。数据 ...
2024-11-26<section id=
2024-11-26《Python数据分析极简入门》 第2节 8-1 Pandas 数据重塑 - 数据变形 数据重塑(Reshaping) 数据重塑,顾名思义就是给数据做各种变 ...
2024-11-26统计学基础 - 理解统计学的基本概念和方法是数据分析师必备的技能之一。统计学为他们提供了处理数据、进行推断和建模的基础。 数 ...
2024-11-25数据分析师在如今信息爆炸的时代扮演着至关重要的角色。他们不仅需要具备扎实的数据分析技能,还需要不断学习和适应不断发展的技 ...
2024-11-25数据分析师的工作职责涉及多个关键方面,从数据的获取到处理、分析再到可视化,旨在为企业的决策提供有力支持。让我们深入了解数 ...
2024-11-25数据分析师:洞察力量的引擎 数据分析师的兴起 数据分析师行业目前正处于快速发展阶段,市场需求持续增长,薪资水平也有所提升。 ...
2024-11-25数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-25数据分析是当今社会中不可或缺的一项技能,涵盖了广泛的工具和技术。其中,掌握各种数据处理函数对于数据分析师至关重要。本文将 ...
2024-11-25“大数据治理”是一个涵盖广泛的复杂概念,其核心在于确保大规模、多样化的数据资源能够被有效管理和利用。不仅涉及数据的采集、 ...
2024-11-25一、引言 背景介绍 随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会的重要资产。大数据的兴起不仅推动了各行各业 ...
2024-11-25《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24