如何用R语言对城管事件数据分析
这次使用主成分分析主要目的并不是降维,而是分析城管数据中的事件类别之间是否存在关系,当然,城管事件类型有好几百,这里就只选取从去年九月到目前发生量前十的事件类别;如下图,排名前十的事件类别依次为,车辆乱停放,乱堆物料堆,非法张贴小广告,店铺出店经营,自备容器外放,违规标语宣传品,机动车乱停放,暴露垃圾,地面不洁,道路不洁。
确定好这十个类别后就是数据的提取了,这时候我们要注意一下数据结构,和数据样本量,为什么呢?因为在主成分分析的时候事件类别只能是属性,也就是说事件类别是一列;这时候看看一下城管数据里面存在的数据结构,数据记录数必须是属性的6~10倍,这时候观察城管数据结构,明显不是我们想要的。
于是写个SQL转换一下数据结构,起的别名没有按照规则来,这是个失误;
这时候就要使用R语言去做分析了,首先是让我们能从数据库里拿数据,所以创建一个数据库链接,安装包RODBC
R语言代码
install.packages("RODBC") library(RODBC) jixiao_connect <- odbcConnect("jixiao",uid="jixiao",pwd = "*****",believeNRows=FALSE)
这时候我们就创建了一个数据库连接jixiao_connect,这时候我们就要提取数据
R语言代码
jixiao_data <- sqlQuery(jixiao_connect," select sum(case when t.kind_code_thd='车辆乱停放' then 1 else 0 end) kind_one ,sum(case when t.kind_code_thd='乱堆物堆料' then 1 else 0 end) kind_two ,sum(case when t.kind_code_thd='非法张贴小广告' then 1 else 0 end) kind_three ,sum(case when t.kind_code_thd='店铺出店经营' then 1 else 0 end) kind_code_4 ,sum(case when t.kind_code_thd='自备容器外放' then 1 else 0 end) kind_code_5 ,sum(case when t.kind_code_thd='违规标语宣传品' then 1 else 0 end) kind_code_6 ,sum(case when t.kind_code_thd='机动车乱停放' then 1 else 0 end) kind_code_7 ,sum(case when t.kind_code_thd='地面不洁' then 1 else 0 end) kind_code_8 ,sum(case when t.kind_code_thd='暴露垃圾' then 1 else 0 end) kind_code_9 ,sum(case when t.kind_code_thd='无照经营游商' then 1 else 0 end) kind_code_10 from test_erkang t where t.district_name in ('美兰区','龙华区','秀英区','琼山区') GROUP BY T.DISTRICT_NAME,TO_CHAR(T.REVIEW_FIRST_DATE,'YYYYMM')") jixiao_data
验证数据是否被提取,说明数据已经提取成功
我们在安装主成分需要用的包
R代码
install.packages("psych") library(psych)
首先我们要做的是需要确定主成分需要几个,这时候我们就需要cattell碎石检验来确定主成分个数,也就是保留特征值大于1的主成分,因为特征值大于1的主成分能解释较多的方差;
R代码
fa.parallel(jixiao_date,fa='pc',n.iter = 100,show.legend=FALSE)
上图中我们应该选取3个主成分
R代码
pc <- principal(jixiao_date,nfactors=3,rotate = 'varimax') pc
后面那个是我们选择的主成分旋转的方法,为了主成分之间能更容易的解释,结果如下
PC1列下的系数是和各个事件类别的相关系数,h2列表示成分能够解释方差的多少,u2列表示没法解释解释方差的比例,事件KIND_ONE也就是车辆乱停放,主要相关联的是主成分PC1,相关系数为0.97,PC2和PC3的相关系数分别为0.05,0.07,主成分能够解释车辆乱停放95%的方差,无法被解释的比例为0.055;proportion var 表示解释整个数据集的解释程度,PC2解释变量30%方差,PC1解释变量26%方差,PC3解释变量21%方差,主成分能够解释整个变量77%的方差;
对主成分进行可视化
R代码
fa.diagram(pc)
又上图我们可以知道主成分组成,大致归类为
PC1:无照经营游商,暴露垃圾,车辆乱停放
PC2:乱堆物堆料,非法张贴小广告,自备容器外放,机动车乱停放,地面不洁
PC3:店铺出店经营,违规标语宣传品;
根据业务和个人的推测
我推测PC1所表示的繁华的步行街道成分,PC2表示的是城中村成分,PC3表示的是主干道成分。
建议和小结
1、可以认为乱堆物堆料,非法张贴小广告,自备容器外放,机动车乱停放和地面不洁是一类相关联事件类别,无照经营游商,暴露垃圾和车辆乱停放是一类相关联事件类别,店铺出店经营,违规标语宣传品可以认为是一类相关联的一类事件类型
2、可以认定主要事件来源是来自城中村,主干道,和步行街道;
3、步行街道给的相应的措施可以增加相应的非机动的停车位,划分小贩经营点,增加环卫人员的清扫频率
4、城中村:提高相应的停车规划,集中整治城中村环境卫生
5:、主干道:相应的增加巡查员的巡查频率即可
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16