
如何用R语言对城管事件数据分析
这次使用主成分分析主要目的并不是降维,而是分析城管数据中的事件类别之间是否存在关系,当然,城管事件类型有好几百,这里就只选取从去年九月到目前发生量前十的事件类别;如下图,排名前十的事件类别依次为,车辆乱停放,乱堆物料堆,非法张贴小广告,店铺出店经营,自备容器外放,违规标语宣传品,机动车乱停放,暴露垃圾,地面不洁,道路不洁。
确定好这十个类别后就是数据的提取了,这时候我们要注意一下数据结构,和数据样本量,为什么呢?因为在主成分分析的时候事件类别只能是属性,也就是说事件类别是一列;这时候看看一下城管数据里面存在的数据结构,数据记录数必须是属性的6~10倍,这时候观察城管数据结构,明显不是我们想要的。
于是写个SQL转换一下数据结构,起的别名没有按照规则来,这是个失误;
这时候就要使用R语言去做分析了,首先是让我们能从数据库里拿数据,所以创建一个数据库链接,安装包RODBC
R语言代码
install.packages("RODBC") library(RODBC) jixiao_connect <- odbcConnect("jixiao",uid="jixiao",pwd = "*****",believeNRows=FALSE)
这时候我们就创建了一个数据库连接jixiao_connect,这时候我们就要提取数据
R语言代码
jixiao_data <- sqlQuery(jixiao_connect," select sum(case when t.kind_code_thd='车辆乱停放' then 1 else 0 end) kind_one ,sum(case when t.kind_code_thd='乱堆物堆料' then 1 else 0 end) kind_two ,sum(case when t.kind_code_thd='非法张贴小广告' then 1 else 0 end) kind_three ,sum(case when t.kind_code_thd='店铺出店经营' then 1 else 0 end) kind_code_4 ,sum(case when t.kind_code_thd='自备容器外放' then 1 else 0 end) kind_code_5 ,sum(case when t.kind_code_thd='违规标语宣传品' then 1 else 0 end) kind_code_6 ,sum(case when t.kind_code_thd='机动车乱停放' then 1 else 0 end) kind_code_7 ,sum(case when t.kind_code_thd='地面不洁' then 1 else 0 end) kind_code_8 ,sum(case when t.kind_code_thd='暴露垃圾' then 1 else 0 end) kind_code_9 ,sum(case when t.kind_code_thd='无照经营游商' then 1 else 0 end) kind_code_10 from test_erkang t where t.district_name in ('美兰区','龙华区','秀英区','琼山区') GROUP BY T.DISTRICT_NAME,TO_CHAR(T.REVIEW_FIRST_DATE,'YYYYMM')") jixiao_data
验证数据是否被提取,说明数据已经提取成功
我们在安装主成分需要用的包
R代码
install.packages("psych") library(psych)
首先我们要做的是需要确定主成分需要几个,这时候我们就需要cattell碎石检验来确定主成分个数,也就是保留特征值大于1的主成分,因为特征值大于1的主成分能解释较多的方差;
R代码
fa.parallel(jixiao_date,fa='pc',n.iter = 100,show.legend=FALSE)
上图中我们应该选取3个主成分
R代码
pc <- principal(jixiao_date,nfactors=3,rotate = 'varimax') pc
后面那个是我们选择的主成分旋转的方法,为了主成分之间能更容易的解释,结果如下
PC1列下的系数是和各个事件类别的相关系数,h2列表示成分能够解释方差的多少,u2列表示没法解释解释方差的比例,事件KIND_ONE也就是车辆乱停放,主要相关联的是主成分PC1,相关系数为0.97,PC2和PC3的相关系数分别为0.05,0.07,主成分能够解释车辆乱停放95%的方差,无法被解释的比例为0.055;proportion var 表示解释整个数据集的解释程度,PC2解释变量30%方差,PC1解释变量26%方差,PC3解释变量21%方差,主成分能够解释整个变量77%的方差;
对主成分进行可视化
R代码
fa.diagram(pc)
又上图我们可以知道主成分组成,大致归类为
PC1:无照经营游商,暴露垃圾,车辆乱停放
PC2:乱堆物堆料,非法张贴小广告,自备容器外放,机动车乱停放,地面不洁
PC3:店铺出店经营,违规标语宣传品;
根据业务和个人的推测
我推测PC1所表示的繁华的步行街道成分,PC2表示的是城中村成分,PC3表示的是主干道成分。
建议和小结
1、可以认为乱堆物堆料,非法张贴小广告,自备容器外放,机动车乱停放和地面不洁是一类相关联事件类别,无照经营游商,暴露垃圾和车辆乱停放是一类相关联事件类别,店铺出店经营,违规标语宣传品可以认为是一类相关联的一类事件类型
2、可以认定主要事件来源是来自城中村,主干道,和步行街道;
3、步行街道给的相应的措施可以增加相应的非机动的停车位,划分小贩经营点,增加环卫人员的清扫频率
4、城中村:提高相应的停车规划,集中整治城中村环境卫生
5:、主干道:相应的增加巡查员的巡查频率即可
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04