如何用R语言对城管事件数据分析
这次使用主成分分析主要目的并不是降维,而是分析城管数据中的事件类别之间是否存在关系,当然,城管事件类型有好几百,这里就只选取从去年九月到目前发生量前十的事件类别;如下图,排名前十的事件类别依次为,车辆乱停放,乱堆物料堆,非法张贴小广告,店铺出店经营,自备容器外放,违规标语宣传品,机动车乱停放,暴露垃圾,地面不洁,道路不洁。
确定好这十个类别后就是数据的提取了,这时候我们要注意一下数据结构,和数据样本量,为什么呢?因为在主成分分析的时候事件类别只能是属性,也就是说事件类别是一列;这时候看看一下城管数据里面存在的数据结构,数据记录数必须是属性的6~10倍,这时候观察城管数据结构,明显不是我们想要的。
于是写个SQL转换一下数据结构,起的别名没有按照规则来,这是个失误;
这时候就要使用R语言去做分析了,首先是让我们能从数据库里拿数据,所以创建一个数据库链接,安装包RODBC
R语言代码
install.packages("RODBC") library(RODBC) jixiao_connect <- odbcConnect("jixiao",uid="jixiao",pwd = "*****",believeNRows=FALSE)
这时候我们就创建了一个数据库连接jixiao_connect,这时候我们就要提取数据
R语言代码
jixiao_data <- sqlQuery(jixiao_connect," select sum(case when t.kind_code_thd='车辆乱停放' then 1 else 0 end) kind_one ,sum(case when t.kind_code_thd='乱堆物堆料' then 1 else 0 end) kind_two ,sum(case when t.kind_code_thd='非法张贴小广告' then 1 else 0 end) kind_three ,sum(case when t.kind_code_thd='店铺出店经营' then 1 else 0 end) kind_code_4 ,sum(case when t.kind_code_thd='自备容器外放' then 1 else 0 end) kind_code_5 ,sum(case when t.kind_code_thd='违规标语宣传品' then 1 else 0 end) kind_code_6 ,sum(case when t.kind_code_thd='机动车乱停放' then 1 else 0 end) kind_code_7 ,sum(case when t.kind_code_thd='地面不洁' then 1 else 0 end) kind_code_8 ,sum(case when t.kind_code_thd='暴露垃圾' then 1 else 0 end) kind_code_9 ,sum(case when t.kind_code_thd='无照经营游商' then 1 else 0 end) kind_code_10 from test_erkang t where t.district_name in ('美兰区','龙华区','秀英区','琼山区') GROUP BY T.DISTRICT_NAME,TO_CHAR(T.REVIEW_FIRST_DATE,'YYYYMM')") jixiao_data
验证数据是否被提取,说明数据已经提取成功
我们在安装主成分需要用的包
R代码
install.packages("psych") library(psych)
首先我们要做的是需要确定主成分需要几个,这时候我们就需要cattell碎石检验来确定主成分个数,也就是保留特征值大于1的主成分,因为特征值大于1的主成分能解释较多的方差;
R代码
fa.parallel(jixiao_date,fa='pc',n.iter = 100,show.legend=FALSE)
上图中我们应该选取3个主成分
R代码
pc <- principal(jixiao_date,nfactors=3,rotate = 'varimax') pc
后面那个是我们选择的主成分旋转的方法,为了主成分之间能更容易的解释,结果如下
PC1列下的系数是和各个事件类别的相关系数,h2列表示成分能够解释方差的多少,u2列表示没法解释解释方差的比例,事件KIND_ONE也就是车辆乱停放,主要相关联的是主成分PC1,相关系数为0.97,PC2和PC3的相关系数分别为0.05,0.07,主成分能够解释车辆乱停放95%的方差,无法被解释的比例为0.055;proportion var 表示解释整个数据集的解释程度,PC2解释变量30%方差,PC1解释变量26%方差,PC3解释变量21%方差,主成分能够解释整个变量77%的方差;
对主成分进行可视化
R代码
fa.diagram(pc)
又上图我们可以知道主成分组成,大致归类为
PC1:无照经营游商,暴露垃圾,车辆乱停放
PC2:乱堆物堆料,非法张贴小广告,自备容器外放,机动车乱停放,地面不洁
PC3:店铺出店经营,违规标语宣传品;
根据业务和个人的推测
我推测PC1所表示的繁华的步行街道成分,PC2表示的是城中村成分,PC3表示的是主干道成分。
建议和小结
1、可以认为乱堆物堆料,非法张贴小广告,自备容器外放,机动车乱停放和地面不洁是一类相关联事件类别,无照经营游商,暴露垃圾和车辆乱停放是一类相关联事件类别,店铺出店经营,违规标语宣传品可以认为是一类相关联的一类事件类型
2、可以认定主要事件来源是来自城中村,主干道,和步行街道;
3、步行街道给的相应的措施可以增加相应的非机动的停车位,划分小贩经营点,增加环卫人员的清扫频率
4、城中村:提高相应的停车规划,集中整治城中村环境卫生
5:、主干道:相应的增加巡查员的巡查频率即可
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13