英特尔携手Cloudera发力大数据,背后有哪些契合点
日前,英特尔携手Cloudera在北京举办数据分析媒体沟通会,讲述了双方达成战略合作关系两年来在大数据领域取得的一系列成果。英特尔公司软件与服务事业部副总裁、系统技术和优化部门大数据技术总监马子雅,有Hadoop之父之称、Cloudera公司首席架构师Doug Cutting,以及Cloudera公司副总裁、大中华区总经理凌琦等参会并接受媒体采访。
英特尔平台为用户提供最佳数据洞察力
马子雅说,大数据作为一个非常有前景的产业在过去的几年里得到了快速的发展。目前90%的数据量都是过去两三年产生的。大数据的价值是通过数据分析给人们带来好的商业洞察力。在这方面,英特尔已经进行了多年的努力,最终目标是希望让任何大数据用户能够在英特尔平台上获得最好的数据洞察力,数据分析速度也最为快捷。
他表示,为了达到这样的目的,英特尔将工作分为几个重点方向。
第一是硬件层面。在这方面,英特尔对硬件进行了很多创新,包括网络、存储、运算等。例如在过去的几个月,英特尔推出了实时分析最快的至强E7V4处理器,也推出了最新的非易失性存储技术3D Xpoint。客户通过迁移到新一代英特尔硬件平台,可以使大数据机组性能得到7倍的提升;而通过在每台服务器中引入英特尔的SSD存储,可以使客户的大数据机组性能提升20%。
第二是在大数据层面。英特尔对很多大数据项目进行了优化,以保证它们能够在英特尔的平台上实现性能的大幅提升。比如英特尔推出了Big Bench、High Bench的测试标准,引领了业务基准测试的标准化的发展。该标准可以帮助业界更为精准的了解大数据在微观以及端到端层面的性能。
第三是在开源领域。英特尔看到大数据受开源影响较大,无论是Hadoop生态系统还是Spark生态系统。因此在过去几年中,英特尔在开源领域进行了很多合作,希望以此影响开源技术的未来走向,能与英特尔具有更高的黏合度。
例如在Hadoop相关项目、Spark相关项目,包括SQL、存储、云结合方面,英特尔都做了大量工作。这些工作涵盖添加性能、改善稳定性、可扩展性、提升性能、提升数据保护等。
此外,在机器学习方面,英特尔也在开源方面做了很多工作,尤其是在帮助客户扩大机器学习模块的可扩展性方面,可以达到10倍至70倍,并且可以缩短机器学习的周期达到8倍。在这方面,英特尔把大部分源代码都贡献给开源。
Hadoop让英特尔硬件更优化
Doug Cutting在发言中表示,Cloudera和英特尔至今已经合作两年时间,作为双方在合作方面的亮点,Apache Hadoop确实改变了人们使用数据的方式,能够让用户在数据中挖掘更多价值,同时在这个过程中能够更好地存储、处理数据,和更优化的使用英特尔为主的大部分硬件。
可以说我们与英特尔的合作就是基于这样一个目的,那就是让大家的软件可以在最受青睐的英特尔的硬件上跑的更好。英特尔和Cloudera当前确实也在寻求合作伙伴,当越来越多的大数据应用在数据中心部署,我们希望能够更好地发挥英特尔硬件的一些功能。他说。
Doug Cutting强调,自己非常高兴的看到在两年后的今天,双方的合作非常成功。在许多领域,Cloudera的工程师与英特尔共同合作,以保证Cloudera的软件能够非常好的运行在英特尔的硬件平台上。其中对某些领域通过重点进行优化,从而使Cloudera技术能够与英特尔技术做到深度结合。比如现在可以以非常低的价格进行解密,只有这样才能够使所有的文件都有加密,在保证数据安全的基础上,并不会在解密和加密的过程中影响到使用和运营效率。
对Cloudera中国市场未来有信心
凌琦在发言中主要分享了Cloudera在中国市场落地1年多时间以来的发展情况。
他介绍,从Cloudera自2014年底成立以来至今已经走过了18个月,目前,Cloudera在中国市场也取得了非常好的发展。公司当前已在北京、上海和广州建立了办事机构,业务拓展速度也是非常的快。
凌琦说,除了在与英特尔进行很多项目的研发、合作外,Cloudera公司自身在商业方面也拥有着完整的售前、营销以及专业服务力量。值得一提的是,作为公司的一大业务是涉及大数据人才的培训,目前已有5家培训领域合作伙伴与Cloudera达成了合作关系,并展开了大规模的大数据人才培训。
此外,凌琦还介绍了Cloudera在中国行业市场拓展方面的情况。目前,Cloudera业务已经覆盖电信、金融、制造以及与基础设施建设、零售等相关行业。这些行业也都是在大数据应用和发展上比较快的行业。
我们非常高兴的看到在国内主要的大企业都开始广泛采用基于Apache Hadoop的Cloudera商业发行版。在主要免费版本的发行和采用率上,Cloudera至少在国内占有70%以上的市场份额。到目前为止运营的18个月中,我非常高兴看到Cloudera在中国市场非常成功。我们对未来有非常好的憧憬。凌琦说。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31