10大特征帮你把脉数据分析3.0时代
不论是经营多年的公司还是创业公司,继续使用旧有模式来支持商业分析,都前景黯淡。大数据已经有了长足的进步,但不要指望它能给你长期的竞争优势。那些想要在新的数据经济中获得成功的公司,必须从根本上重新考虑如何利用数据分析为自己和客户创造价值。
分析3.0是变革的方向,也是“分析竞争”的新模式。
每日日一获
分析进化史数据分析3.0时代 分析1.0――商业智能时代
相较于更早的商业活动,我们所谓的分析1.0已经有了实质性的发展,能够客观分析和深入理解重要的商业现象,并且帮助管理者基于客观事实决策,而不是仅凭直觉。
在商业实践中,生产流程、销售、客户交互乃至更多的数据,第一次被存录、整合和分析。新的计算技术是实现这些的关键因素。这就是企业级数据仓库的时代,系统可以捕捉数据,然后利用软件进行商业智能分析,最后可以进行数据查询和结果交付。
分析2.0——大数据时代
2005年前后,谷歌,eBay等硅谷的互联网公司和社交网络开始大规模存储和分析新类型信息。大数据明显有别于系统内部产生的交易类“小”数据,它是来自公司外部、互联网、传感器、各种公开发布的数据(比如人类基因组计划),还包括来源于音频和视频的数据。
当分析进入2.0时代,人们对于强大的新型分析工具的需求——以及通过提供工具来获利的机会——很快就显而易见了。所有公司都忙于发展新能力和争取新客户。第一个吃螃蟹的公司很容易占得先机,获得令人印象深刻的宣传效果,并且会快速地研发新产品。
许多创新技术已经被开发、收购和熟练掌握。比如,大数据很难在单个服务器上运行并进行快速分析,所以Hadoop平台应运而生。新型数据库NoSQL可以处理相关的非结构化数据。
分析2.0要求公司所具备的能力与分析1.0大不相同。新一代的数量分析师被称为数据科学家,他们不仅要具备计算能力还要掌握分析能力。数据科学家已不再满足于被藏在公司内部,他们希望接触客户以开发新产品,并为公司出谋划策,甚至是创造新的商业形态。
分析3.0——富化数据的产品时代
在分析2.0时代,一些敏锐的观察者已经洞见到即将来临的下一个大时代。硅谷的大数据先驱公司开始投资面向客户产品、服务和功能领域的数据分析。它们通过大数据分析吸引更多的访客登录它们的网站,这些办法包括更佳的搜索算法、朋友和同事推荐产品、购买建议以及针对性极高的定向广告等。
大公司的纷纷介入标志着分析3.0时代的来临。现在不仅仅是IT公司或者电子商务公司利用数据分析创造新产品和新服务,任何行业的任何公司都在这样做。和前两个时代类似,对于那些想在“分析竞争”中占有优势的公司或者为此类公司提供数据和分析工具的供应商,
“分析竞争”不仅能够解决公司的传统问题,比如改善内部决策,也能为公司创造更有价值的产品和服务——这才是分析3.0的精髓。现在,银行业、工业制造业、医疗设备和产品的供应商、零售业――任何行业、任何公司,只要愿意去探索各种可能性,都能从他们的整合的数据中开发出有价值的产品和服务。
10大特征数据分析3.0时代
公司要用全新的视角看待“分析”的价值和作用,这意味着战略重点的转移。公司需要意识到这将是一系列挑战——发展新能力、设置新岗位和重新设定业务的优先级。
1各种类型数据通常会混在一起
公司需要整合内部、外部、结构化、非结构化的大数据和小数据,利用规定性分析和预测性分析模型给出新见解,并能明确地指导一线工人有效完成工作。为监视油量、油箱位置和油箱容量和驾驶行为等部分关键的指标,施耐德物流公司(Schneider National)把传感器的数据输入物流优化算法。这样做的结果是在改善物流网络的同时,降低了燃油成本和事故率。
2新工具组合
在分析1.0时代,数据仓库被视作分析的基础。2.0时代,公司主要依靠Hadoop集群和NoSQL数据库。如果问我今天的技术手段是什么,答案是“综上所有”:数据仓库、数据库和大数据装置,将传统数据查询手段与Hadoop结合的环境(亦称为Hadoop 2.0),还包括垂直和图表数据库等等。
无论从数量还是复杂性的角度考虑,IT架构师面对数据管理设备的选择难度极大,而且几乎每个公司最终的选择都是混合的数据环境。有些数据还以旧格式存在,但同时需要新的数据处理流程以满足暂存、求值、搜索和生成应用之间的数据传递和数据分析。
3更快的分析方法和技术
2.0时代的大数据技术已经比1.0时代的数据管理和分析技术快了很多。为了满足这一速度需求,3.0时代的新型“敏捷”分析方法和机器学习技术正在以更快的速度来提供分析结果。
和敏捷开发相似,敏捷分析法要求工程师高频率地向项目利益相关人交付部分结果,让最优秀的数据科学家一直在紧迫感中工作。3.0时代面临的挑战是如何让企业在运营及产品发展、决策过程方面充分利用新技术和新方法的优势。
4嵌入式分析
为了与日益提高的数据处理和分析速度相匹配,分析3.0的模块通常是直接嵌入到运营系统和决策系统中,这显著地提升了数据的运行速度和分析效果。
一些公司把评分算法和分析规则集成到全自动化的系统当中;另外一些公司则把分析植入以客户为导向的产品和特性当中。不管是哪种情况,把分析植入系统和流程,不仅会带来更快的运算速度,也使管理者无法绕过数据分析做决策――这通常是一件好事。
5数据发掘
为了开发以数据为基础的产品和服务,公司通常需要一个强大的数据发掘平台,还需要具备相应的技能和流程。
虽然最初设计公司数据仓库的目的是数据发掘和分析,但不幸的是,很多公司已经把它变成了数据贮藏室——把数据堆在那里不做任何处理。如前文所述,把数据录入到数据仓库非常耗时耗力。如今,数据发掘环境使得不需要太多准备就能确定数据集的特质,并将其分别输入数据仓库。
6跨学科的数据团队
在互联网公司或者大数据创业公司中,数据科学家通常能掌控全局,或者至少有着很大的自主权。但是,在大型和相对传统的公司中,他们必须和其他部门的同事通力协作,以确保大数据和业务所需的“大分析”相匹配。
在许多情况下中,这些公司中的“数据科学家”与传统的数量分析师无异,他们不得不花更多的时间进行数据管理工作。公司现在也开始聘用擅长提取信息并将其结构化的数据黑客,并让他们与擅长建模的分析师一起工作。
数据科学家和数据黑客团队都必须与IT部门一同工作,IT负责提供大数据和用于数据分析的基础架构,配置“沙盒”以供数据探索。(沙盒在这里是指IT部门有所有的数据,——译者注),然后将探索性分析转变为生产能力。这个联合团队将会竭尽所能地完成分析工作,他们角色上也经常会有所重叠。
7首席分析官
当分析已经变得如此重要,公司需要更高级别的管理者进行监管。已经有公司设置了“首席分析官”职位来培养和开发员工的分析能力。美国国际集团(American International Group)、匹兹堡大学医疗中心、奥巴马竞选团队、富国银行(Wells Fargo)和美国银行(Bank of America)已经有C级的分析主管。毫无疑问,这个名单还会继续增加。
8规定性分析
通常有三种类型的分析:描述性,用于报告过去;预测性,使用模型分析过往的数据来预测未来;规定性,使用数据模型来确定最优行动方式。虽然分析3.0包含以上三种类型的分析,但它强调的是最后一种。
规定性分析要求大量的测试和优化工作,然后把分析嵌入关键流程和员工行为中。这一方法能带来很高的运营效益,但同时要求高水平的计划案和高质量的执行力。比如,如果UPS ORION系统提供了错误的路线信息,管理者必须立即着手处理,不能让这种情况持续太久。UPS高管们说,比起算法和系统开发,他们在管理上花费了更多的时间。
9用于实际业务的分析
相对于只将分析用于内部决策,分析3.0提供了把分析流程扩展到业务领域的机会。机器学习能创造更多模型,让组织获得更精细、更准确的预测。
以IBM为例,之前公司在“需求生成”流程中使用了150个数据模型,用来评估哪些客户更值得销售人员投入时间和精力。在与现代分析公司 (Modern Analytics)合作后,IBM启动了“模型工厂”(Model Factory)和“数据流水线”(Data Assembly Line),IBM现在每年能开发和维护5000个数据模型,却只需4个人来完成。
新系统能够在无需人工干预的情况下建构95%的模型,而另外3%只需要分析师做些微调。这些新模型能高度准确地识别出产品、客户和地理位置的差别。在泛亚洲市场进行的测试表明,相比没有数据分析的细分市场,该模型使客户反馈率翻倍。
10决策和管理的新方式
如果希望在公司里让分析助力数据经济,你就需要决策和管理方面的新方法。这些方法能够让你的决策更可靠。管理者们需要习惯数据驱动的实验和测试。他们应该主动要求任何重要项目都必须进行小规模但系统的验证实验,并切记实验的目的是为了严格控制高管的“雄心壮志”。
不得不提醒的是,一些由大数据应用所提示的改变并不一定会发生。大数据是持续动态变化的,以社交媒体数据为基础分析品牌忠诚度就是很好的一例,你会发现各项指标不可避免地动态起落。这种“数据烟雾弹”,可被视作问题的早期预警,但是它们只是指示性的警告,而非证实的结果。管理者们需要制定规范来确定决策和行为的预警标准。
大数据先天就具有不确定的特质。通常大数据分析出的结果与因素之间的关系都是相关性,不是因果关系,也可能纯属巧合(从统计学的角度,数据量越大纯属巧合的情况越多)。大数据的这一本质可能会让许多高管头疼,究竟是信还是不信。解决的方法是,如果待定决策事关重大,那么决定之前必须进一步调查。
规定性分析会改变管理一线员工的方式。公司能观察到员工的所有行为,这是前所未有的情况。毫无疑问,员工也能觉察到这样的密切监控,过分详尽的行为报告让员工不自在,正如可以分析顾客购买行为的大数据会让顾客有脊背发凉的感觉。在分析3.0的世界,有时我们需要学会适当地“无视”。
分析3.0是“分析竞争”的终极版么?也许不是;但是我有把握说,当有一天数据经济成为主流时,你回望历史会发现,“现在”就是最关键的时刻。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10