京公网安备 11010802034615号
经营许可证编号:京B2-20210330
用数据分析来设计页面
设计时不能单凭经验和直觉,因为涉及到的目标人群、场景、操作习惯的不同。为了获取更准确、有效的信息去辅助、检测设计,设计师会选择定性(用户访谈、焦点小组)和定量(调研问卷、网站数据分析)的方式进行用户研究。其中“网站数据分析”这一方式不需要花费较长的时间及人力成本,同时避免了用户及环境等不稳定因素对分析结果造成的干扰。只要具备精准及适用的数据,我们应优先选择这一方法辅助设计。
通常我们可以获取到哪些数据呢?
1、 网站数据
搜索常见的数据如下:
Query – 搜索关键字数
PV(Page View) — 页面浏览量,页面每一次刷新即被计算一次
UV(Unique Visitor) — 用户访问数
Click — 页面总点击数,每一个功能都会有相应的点击数
L->D — 搜索list页面到detail页面的点击数据,即转化率,不同页面有不同的数据。
CTR — Click/LPL,LPV即搜索list页面上的浏览量,CTR即每次浏览的点击次数。
2、 用户访谈、定性调研、焦点小组
3、 已有结论的报告
4、 线上测试(如A/B test,搜索中常用内部开发的可以多方案上线测试的buckettest)
网站数据中可以了解到什么信息?
1、关键字流失率分析
图1是用户输入“女鞋”相关的关键字及相应的UV流失率(即没有在搜索页进行过任何操作行为的用户数占所有搜索用户的比例),从数据上看添加了真皮、广州、时尚等属性词的关键字流失率相对低很多。
关键字描述越详细,搜索匹配到的产品越准确,用户也就可以更快的找到目标产品。但让用户精确输入关键字的成本较高(如用户不知道用哪些描述词更适合等)。如何降低这个成本?我们可以使用suggestion(关键字推荐)(见图2)和SN区(类目属性筛选区)(见图3)给用户恰当的推荐和引导。
2、快速筛选改版后数据分析
图4是搜索上的筛选项。搜索的目标应该是更快、更准确的帮助用户找到产品,筛选区便是其中一个重要的组成部分,让用户更快的找到筛选项以及简单的完成筛选操作,是每次改版的中心目的。
各筛选项应该放在哪里更合适,很大程度上取决于用户在查找产品的时候,更关注哪些维度的信息。对于已经上线的功能,我们可以通过数据进行分析,如上图是筛选区的CTR数据,可以发现用户使用地区、排序、单价、经营模式操作较多,说明用户对这方面筛选需求较大,也较关注这几个维度的信息,以此可以将筛选项调整到方便用户查找的位置,也降低了用户的记忆负担,因用户一般都是从左到右浏览,所以可以将重要的筛选调整到首位或是用视觉突出。而一些数据较低的筛选,可以根据情况隐藏或是下线,也增加筛选区的扩展性。
图5根据图4的数据,我们对筛选项的位置以及排序按钮交互方式进行了调整。
新版本上线两周后我们发现用户较关注的筛选项调整到左边位置后CTR数据明显上升(绿色为明显数据上升,红色则数据下降,其他数据小量上升)。
综上所述,设计、迭代流程如下:
数据验证,这个一次相对成功的设计。
3、对比功能上线后数据分析
同时,我们来看一个不合理的产品设计(见图7)。图上是阿里巴巴在去年上的对比功能,用户勾选产品加入对比(图7第1步)只占整个搜索CTR0.6%左右,而到最后点击了对比按钮(图7第2步)的转化率只有其中的10%不到,对比功能的使用率很低。
根据这个发现,我们召集了5个测试者(1位产品经理、1位运营、3位用户)进行了焦点测试,得到如下几点反馈1、用户只要看其中的几个信息,不需要那么多维度的信息对比。2、用户更习惯通过点开detail进行对比。
很多垂直化的行业搜索都有对比功能,如太平洋、中关村、淘宝的手机等,该功能通过对比信息帮助用户挑选出更符合目标的产品。但适不适合我们的网站,还需要多考虑一番。结合以上数据来看,对比功能更适合一些需要关注多维度信息对比的垂直行业,而关注维度较少的,用户通过短期记忆就可以达到。
运用数据检测设计
一般在全量上线前会通过buckettest测试各方案,对比用户行为数据检测哪个方案更合理、体验更好。
通过bucktest可以得到如图8的对比数据,红色为数据下滑,绿色为数据上涨。
运用buckettest测试,对于检测设计是很有效的方法,特别是针对小细节的体验优化。对方案调整处数据打点,就可以监测到相应的数据变化。例如按钮调整,检测调整后是否比原来的方案体验更好,在测试前要求开发同学在监测数据时给这个按钮打点,测试后就可以了解到按钮调整前、后的对比数据。如你想了解按钮位置调整是否能提升体验,在设计时就要规避其他因素可能引起的影响如按钮样式等,以此来不断优化设计方案。
总结
分析数据、读懂数据、运用数据,可以很好的辅助我们去设计产品、改善体验,这也是设计师需要掌握的一门必修课。
数据虽然很强大但是不要迷恋它,不要只关注数据的起落,而是要分析数据背后真实的用户原因及需求,数据只是一个分析辅助工具。
不要任何设计都依赖测试及数据检测,每一次测试所需的开发和时间成本太高。尽管设计师不能作出100%的正确判断,但是结合有效的工作习惯及总结分析,还是能够大大的提高设计的准确率及解决方案的有效性,这也是设计师的价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17