本次分析的数据源来自链家网。链家网中有”二手房-成交房源”这个板块,可以查看到所有通过链家成交的二手房的信息,其中最值得称赞的是成交价格的真实性。买过房子的朋友都清楚,房子的实际成交价格和在房管局信息中心的网签价格是不一样的,处于避税的考虑,一般来说网签价格都会比真实的成交价格低,因为在房屋买卖过程中的各种税费都是以网签价格来确定的。因此,一般政府部门出具的关于房价的报告,其实是不可信的。
所以分析的第一步,就是从链家网获取想要的数据。这里我利用Python做了一个简单的爬虫,获取了从2015年7月到2016年5月,在北苑地区通过链家成交的约2500套二手房成交的数据。经过手工的数据清洗,获取到的数据大概是这个样子:
其中,链家的数据在2015年11月之后精确到了成交日期,但是为了和2015年11月之前的数据粒度统一,我都统一成了成交月份.
链家可以查询到的最晚成交是两周前的数据,因此2016年5月数据在爬取时刻只有5月3日之前,所以在之后的分析中5月数据是不可用的
本次分析不是要解决什么问题,因此分析以数据探索为主,分成两大块:
3.1 整体涨幅显著
从整体来看,北苑地区房价在近10个月内经历了一个显著的涨幅:2016年4月相对2015年7月增幅达31%;2016年4月环比3月增长12%。
对照5月18日国家统计局发布的4月份70个大中城市住宅价格变动情况,发现政府的数据似乎温和了很多……信谁大家可以自己判断……
3.2 小区越高端、越新,涨幅越大;70年住宅涨幅大于50年商住两用
北苑地区楼盘有50余个,我选取了10个小区,分别看最近一段时间的价格趋势,如下图:
从图上可以清晰的看出分成了三快
1) 第一块由华贸城、润泽公馆、世华泊郡组成,目测涨幅在40%左右。这三个小区都是2012年之后建设的,高端大气,整体价格高,但是涨幅也最高
2) 第二块由北苑家园各种园组成,目测涨幅在30%左右。这些园大部分建筑年代在1998-2005之间,只有望春园是2008年,因此价格也是望春园要明显高于其他园。这些相对平民的小区涨幅就不如高端小区
3) 第三块是最下面的旭辉奥都,目测涨幅在25%左右。旭辉奥都是2008年建成的,不过是50年产权的商住两用,不限购,但是现在也可以落户、也是民水民电,但是价格确实相对较低,而且涨幅也没有其他小区快……难道只是因为50年的原因吗?
3.3 一居及四居户型涨幅最大
从下图可以看出,一居及四居的涨幅最大,猜测原因:一是此类户型数量较少,供给相对稀缺;二是目前国内一线城市贫富差距极大:
3.4 楼层对于涨幅的影响在各小区情况不同
我们从下图中可以看到,从整体上讲,低楼层的房子涨幅更高一些,但是具体到某一个小区,情况各不相同:
4.1 高端楼盘两居单价最高,主要是因为面积较小
下图统计了从2015.7到2016.4,按照不同户型的成交均价情况:
对于华贸城、润泽公馆、世华泊郡三个相对高档的小区,两居的单价都是最贵的。而其他小区没有一致的特征,但是超过一半的两居是最便宜的。
下图统计了两居的成交面积,可以发现三个高端楼盘的两居面积较小,平均面积在90平方米以下(实际情况是这三个小区最大的两居不超过100平米)。而其他小区的两居面积都较大。
所以,猜测购房者的普遍心态可能是这样:想购买两居的人都偏向新小区的小两居。
4.2 面积越大的房子单价会越低?看来不一定!
通常来说,面积越小的房子总价低,单价高(这一点尤其在学区房上体现的很明显),面积越大的房子总价高,单价低。但是我分析了几个小区的面积与成交价格的关系,发现没有统一的规律:
4.3 朝向貌似已经不重要了
我们常理认为,南向的房子应该价格较贵、增幅较大,但是我尝试对于朝向进行分析时,发现数据一片混沌,根本得不出有价值的结论。从整体和单个小区来看,不存在南向一定贵,东西一定便宜的现象,可见朝向在现在这个时代,重要性已经大不如前了
其实在这个简单的研究中,我只研究了房子自身的属性数据。但是房价所受到的影响太多了。除了房子本身的这些属性的分析,还有交通、配套设施、停车位、学区房、是不是有核电站在周围等等……
北苑地区有5号和13号两条地铁经过,交通相对便利,社区成熟,而且我认为支撑此地区房价最重要的因素,是望京已经成为北京一个新的CBD,原本就有爱立信、诺基亚、联想、美团等高科技企业,随着阿里巴巴、Uber这两个巨头的入驻,带来越来越多的高收入精英人才,望京地区的房价已经水长船高。作为紧靠大望京的北苑地区,会成为挤出效应的收益区域。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27