本次分析的数据源来自链家网。链家网中有”二手房-成交房源”这个板块,可以查看到所有通过链家成交的二手房的信息,其中最值得称赞的是成交价格的真实性。买过房子的朋友都清楚,房子的实际成交价格和在房管局信息中心的网签价格是不一样的,处于避税的考虑,一般来说网签价格都会比真实的成交价格低,因为在房屋买卖过程中的各种税费都是以网签价格来确定的。因此,一般政府部门出具的关于房价的报告,其实是不可信的。
所以分析的第一步,就是从链家网获取想要的数据。这里我利用Python做了一个简单的爬虫,获取了从2015年7月到2016年5月,在北苑地区通过链家成交的约2500套二手房成交的数据。经过手工的数据清洗,获取到的数据大概是这个样子:
其中,链家的数据在2015年11月之后精确到了成交日期,但是为了和2015年11月之前的数据粒度统一,我都统一成了成交月份.
链家可以查询到的最晚成交是两周前的数据,因此2016年5月数据在爬取时刻只有5月3日之前,所以在之后的分析中5月数据是不可用的
本次分析不是要解决什么问题,因此分析以数据探索为主,分成两大块:
3.1 整体涨幅显著
从整体来看,北苑地区房价在近10个月内经历了一个显著的涨幅:2016年4月相对2015年7月增幅达31%;2016年4月环比3月增长12%。
对照5月18日国家统计局发布的4月份70个大中城市住宅价格变动情况,发现政府的数据似乎温和了很多……信谁大家可以自己判断……
3.2 小区越高端、越新,涨幅越大;70年住宅涨幅大于50年商住两用
北苑地区楼盘有50余个,我选取了10个小区,分别看最近一段时间的价格趋势,如下图:
从图上可以清晰的看出分成了三快
1) 第一块由华贸城、润泽公馆、世华泊郡组成,目测涨幅在40%左右。这三个小区都是2012年之后建设的,高端大气,整体价格高,但是涨幅也最高
2) 第二块由北苑家园各种园组成,目测涨幅在30%左右。这些园大部分建筑年代在1998-2005之间,只有望春园是2008年,因此价格也是望春园要明显高于其他园。这些相对平民的小区涨幅就不如高端小区
3) 第三块是最下面的旭辉奥都,目测涨幅在25%左右。旭辉奥都是2008年建成的,不过是50年产权的商住两用,不限购,但是现在也可以落户、也是民水民电,但是价格确实相对较低,而且涨幅也没有其他小区快……难道只是因为50年的原因吗?
3.3 一居及四居户型涨幅最大
从下图可以看出,一居及四居的涨幅最大,猜测原因:一是此类户型数量较少,供给相对稀缺;二是目前国内一线城市贫富差距极大:
3.4 楼层对于涨幅的影响在各小区情况不同
我们从下图中可以看到,从整体上讲,低楼层的房子涨幅更高一些,但是具体到某一个小区,情况各不相同:
4.1 高端楼盘两居单价最高,主要是因为面积较小
下图统计了从2015.7到2016.4,按照不同户型的成交均价情况:
对于华贸城、润泽公馆、世华泊郡三个相对高档的小区,两居的单价都是最贵的。而其他小区没有一致的特征,但是超过一半的两居是最便宜的。
下图统计了两居的成交面积,可以发现三个高端楼盘的两居面积较小,平均面积在90平方米以下(实际情况是这三个小区最大的两居不超过100平米)。而其他小区的两居面积都较大。
所以,猜测购房者的普遍心态可能是这样:想购买两居的人都偏向新小区的小两居。
4.2 面积越大的房子单价会越低?看来不一定!
通常来说,面积越小的房子总价低,单价高(这一点尤其在学区房上体现的很明显),面积越大的房子总价高,单价低。但是我分析了几个小区的面积与成交价格的关系,发现没有统一的规律:
4.3 朝向貌似已经不重要了
我们常理认为,南向的房子应该价格较贵、增幅较大,但是我尝试对于朝向进行分析时,发现数据一片混沌,根本得不出有价值的结论。从整体和单个小区来看,不存在南向一定贵,东西一定便宜的现象,可见朝向在现在这个时代,重要性已经大不如前了
其实在这个简单的研究中,我只研究了房子自身的属性数据。但是房价所受到的影响太多了。除了房子本身的这些属性的分析,还有交通、配套设施、停车位、学区房、是不是有核电站在周围等等……
北苑地区有5号和13号两条地铁经过,交通相对便利,社区成熟,而且我认为支撑此地区房价最重要的因素,是望京已经成为北京一个新的CBD,原本就有爱立信、诺基亚、联想、美团等高科技企业,随着阿里巴巴、Uber这两个巨头的入驻,带来越来越多的高收入精英人才,望京地区的房价已经水长船高。作为紧靠大望京的北苑地区,会成为挤出效应的收益区域。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31