本次分析的数据源来自链家网。链家网中有”二手房-成交房源”这个板块,可以查看到所有通过链家成交的二手房的信息,其中最值得称赞的是成交价格的真实性。买过房子的朋友都清楚,房子的实际成交价格和在房管局信息中心的网签价格是不一样的,处于避税的考虑,一般来说网签价格都会比真实的成交价格低,因为在房屋买卖过程中的各种税费都是以网签价格来确定的。因此,一般政府部门出具的关于房价的报告,其实是不可信的。
所以分析的第一步,就是从链家网获取想要的数据。这里我利用Python做了一个简单的爬虫,获取了从2015年7月到2016年5月,在北苑地区通过链家成交的约2500套二手房成交的数据。经过手工的数据清洗,获取到的数据大概是这个样子:
其中,链家的数据在2015年11月之后精确到了成交日期,但是为了和2015年11月之前的数据粒度统一,我都统一成了成交月份.
链家可以查询到的最晚成交是两周前的数据,因此2016年5月数据在爬取时刻只有5月3日之前,所以在之后的分析中5月数据是不可用的
本次分析不是要解决什么问题,因此分析以数据探索为主,分成两大块:
3.1 整体涨幅显著
从整体来看,北苑地区房价在近10个月内经历了一个显著的涨幅:2016年4月相对2015年7月增幅达31%;2016年4月环比3月增长12%。
对照5月18日国家统计局发布的4月份70个大中城市住宅价格变动情况,发现政府的数据似乎温和了很多……信谁大家可以自己判断……
3.2 小区越高端、越新,涨幅越大;70年住宅涨幅大于50年商住两用
北苑地区楼盘有50余个,我选取了10个小区,分别看最近一段时间的价格趋势,如下图:
从图上可以清晰的看出分成了三快
1) 第一块由华贸城、润泽公馆、世华泊郡组成,目测涨幅在40%左右。这三个小区都是2012年之后建设的,高端大气,整体价格高,但是涨幅也最高
2) 第二块由北苑家园各种园组成,目测涨幅在30%左右。这些园大部分建筑年代在1998-2005之间,只有望春园是2008年,因此价格也是望春园要明显高于其他园。这些相对平民的小区涨幅就不如高端小区
3) 第三块是最下面的旭辉奥都,目测涨幅在25%左右。旭辉奥都是2008年建成的,不过是50年产权的商住两用,不限购,但是现在也可以落户、也是民水民电,但是价格确实相对较低,而且涨幅也没有其他小区快……难道只是因为50年的原因吗?
3.3 一居及四居户型涨幅最大
从下图可以看出,一居及四居的涨幅最大,猜测原因:一是此类户型数量较少,供给相对稀缺;二是目前国内一线城市贫富差距极大:
3.4 楼层对于涨幅的影响在各小区情况不同
我们从下图中可以看到,从整体上讲,低楼层的房子涨幅更高一些,但是具体到某一个小区,情况各不相同:
4.1 高端楼盘两居单价最高,主要是因为面积较小
下图统计了从2015.7到2016.4,按照不同户型的成交均价情况:
对于华贸城、润泽公馆、世华泊郡三个相对高档的小区,两居的单价都是最贵的。而其他小区没有一致的特征,但是超过一半的两居是最便宜的。
下图统计了两居的成交面积,可以发现三个高端楼盘的两居面积较小,平均面积在90平方米以下(实际情况是这三个小区最大的两居不超过100平米)。而其他小区的两居面积都较大。
所以,猜测购房者的普遍心态可能是这样:想购买两居的人都偏向新小区的小两居。
4.2 面积越大的房子单价会越低?看来不一定!
通常来说,面积越小的房子总价低,单价高(这一点尤其在学区房上体现的很明显),面积越大的房子总价高,单价低。但是我分析了几个小区的面积与成交价格的关系,发现没有统一的规律:
4.3 朝向貌似已经不重要了
我们常理认为,南向的房子应该价格较贵、增幅较大,但是我尝试对于朝向进行分析时,发现数据一片混沌,根本得不出有价值的结论。从整体和单个小区来看,不存在南向一定贵,东西一定便宜的现象,可见朝向在现在这个时代,重要性已经大不如前了
其实在这个简单的研究中,我只研究了房子自身的属性数据。但是房价所受到的影响太多了。除了房子本身的这些属性的分析,还有交通、配套设施、停车位、学区房、是不是有核电站在周围等等……
北苑地区有5号和13号两条地铁经过,交通相对便利,社区成熟,而且我认为支撑此地区房价最重要的因素,是望京已经成为北京一个新的CBD,原本就有爱立信、诺基亚、联想、美团等高科技企业,随着阿里巴巴、Uber这两个巨头的入驻,带来越来越多的高收入精英人才,望京地区的房价已经水长船高。作为紧靠大望京的北苑地区,会成为挤出效应的收益区域。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30数据分析师在现代企业中扮演着关键角色,他们的工作内容不仅丰富多样,还对企业的决策和发展起着重要的作用。正如一个经验丰富的 ...
2024-12-29数据分析师的能力要求 在当今的数据主导时代,数据分析师的角色变得尤为重要。他们不仅需要具备深厚的技术背景,还需要拥有业务 ...
2024-12-29