制造企业如何借力工业大数据
美国的管理学家、统计学家爱德华·戴明说过一句话:“除了上帝,任何人都必须用数据来说话。”在经历消费大数据时代后,人们迎来了工业大数据时代。
工业大数据和原来的信息化有何区别?
简单来说,1990年代以前,大部分企业都在做企业内部信息化,这被称为第一次浪潮。1990年代以后,互联网开始席卷全球,企业相继进行互联网化。而随着信息化与工业化的深度融合,工业大数据悄然兴起,这也将成为下一个提升制造业生产力的技术前沿。在清华大学工业大数据研究中心主任王建民看来,工业大数据即第三次工业变革,它以智能互联的产品为核心载体,而不单纯只是通过互联网增值。
王建民认为,在制造业的利润越来越低的情况下,工业大数据可以帮助中国企业提高产品在使用维护阶段的利润。最重要的是,利用数据进行跨界运营,能够为企业带来新的生存空间。
利用大数据抢占价值高地
为什么工业大数据对当下的中国企业来说,有着如此深远的意义?
事实上,在王建民看来,一个复杂装备的生命周期分三个阶段,即:开发制造阶段(Beginning of Life,简称BOL)、使用维护阶段(Middle of Life,简称MOL)、回收利用阶段(即End of Life,简称EOL)。
原来,制造企业将重心放在开发制造阶段,企业的核心目标就是将装备设计制造出来。而产品售卖给消费者后,就和企业没有关系或者变得无关紧要了。所以生命周期的第二、三阶段,常常被企业忽略。但装备的价值真正体现在用户的使用体验上,而不在于制造,尽管制造由质量决定。但消费者在使用阶段的流畅程度,才能反映出产品的最终功效。
加工制造环节的确能够产生很多利润,但在当前环境下,生产制造的利润越来越薄,使企业越来越难以为继。而中国是一个制造大国,更是一个使用大国,制造业的兴衰事关重大。王建民认为,只有利用大数据抢占价值高地,实现产品智能化,才能实现从“中国制造”到“中国创造”的转变,从“生产型制造”到“服务型制造”转变,这也是“中国制造2025”战略的应有之义。
跨界运营是工业互联网转型的核心
和之前很多技术一样,工业大数据并非横空出世,而是一脉相承。但又有新的变化,这种新的变化,在王建民看来,其核心在于连接,将原来孤立的机器连接起来,将人和机器连接起来,将不同的企业、行业连接起来。
事实上,这种连接已经产生了巨大的价值,有很多企业已经开始实践了。
例如:将人和产品联系起来,可以实现产品创新。日本科研人员设计出一种新型汽车座椅,根据驾驶者的体重、压力值等数据识别主人,以判断驾驶者是否为主人,从而决定是否启动。
又例如:将两个不同领域连接起来,可以实现销售模式的创新。欧洲人可以做到今天卖明天的风电,怎么卖?他们根据一系列数据,对明天的风力精准地进行测算,从而实现当天交易。这是风电装备在整个大气环境下进行的跨界运营的绝佳案例。
还有一个例子,《哈佛商业评论》曾经发表过一篇文章叫《智慧的互联产品》。美国人认为未来的工业产品应该分为五个阶段,到第四个阶段的时候,装备、产品会进入到一个产品的系统阶段,机器和机器之间可以对话和合作。比如在农业领域,播种器械、收获器械会联合起来到一个农场去作业。而终极阶段是:农业机器的集群和天气的数据,会和种子的数据、灌溉系统的数据联合起来,通过全方位的连接来解决农业生产中的绿色节能问题。
王建民说,通过跨界运营来创新是工业互联网转型的核心。在使用阶段做一个简单的维修、更换配件,不管是预防性维修还是主动维修,都还处于工业互联网的初级阶段。只有通过数据进行跨界运营,才抓住了整个装备制造业在服务阶段转型升级的核心。
工业大数据应避免的三个误区
听上去很美好的工业大数据,如何实践呢?王建民梳理了三大误区,以供企业参考:
一、维修=运行
在工业领域,维修和运行基本不会分开。但是在工业大数据里,二者是分开的。维修指的是,当产品性能下降的时候,通过更换零件或者其他手段,恢复其产品性能。而运行是指如何使用机器,使它产生价值。
二、产业大数据等同于消费大数据
工业大数据最核心的问题在于分析结果的可靠性。在消费大数据上,如果产品的广告推荐能达到20‰的可靠性,就是搜索引擎的最好水平。但这一数据在工业领域,显然远远不够。因为在工业领域,往往是失之毫厘,差之千里。工业的应用场景对数据准确率的要求达到99.9%,甚至更高,否则就会造成严重的经济损失乃至安全事故的发生。所以,王建民建议,从人员结构上来讲,工业大数据需要数据和产业的人才一起来做。
三、采集的数据越多越好
对于企业而言,机器采集的数据有时候是一个灾难,不是企业采集的所有数据都是有用的。不产生价值的数据就是垃圾信息,对于企业而言就是负担。企业在收集数据之前,首要任务是给数据画像,弄明白自己到底需要什么样的数据。
王建民认为,无论如何,大数据仍然要围绕装备增值服务的业务逻辑,在达到这个目的的过程中,让数据发挥作用,而非简单地只看到数据,而忽略了根本的逻辑。
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21