京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SAS市场研究应用介绍:对应分析
一.对应分析(Correspondence analysis)介绍
前二周我们简单讲了SAS市场研究应用,联合分析与离散选择偏好。
组合分析用来评价消费者偏好。如果将产品看成一些属性的组合,那么组合分析可以决定哪种属性对决定产品偏好最重要,以及哪种属性水平的组合是最受偏好的。
组合分析是用来发掘消费者的偏好,指出了消费者将选择购买哪种组合。在市场研究中,消费者实际做的选择是一种利益行为,那么用离散选择分析方法来直接分析消费者的选择是明智的。
但在市场研究中常常会遇到分类数据,那么对应分析是一种可以在列联表中生动呈现出纵列关系的工具。
本周带大家认识下对应分析,帮助大家以后在市场研究碰到并解决分类数据的快速实现方法。
对应分析(Correspondence analysis)也称关联分析、R-Q型因子分析,是近年新发展起来的一种多元相依变量统计分析技术,通过分析由定性变量构成的交互汇总表来揭示变量间的联系。可以揭示同一变量的各个类别之间的差异,以及不同变量各个类别之间的对应关系。
主要应用在市场细分,市场研究、产品定位、地质研究以及计算机工程等领域中。原因在于,它是一种视觉化的数据分析方法,它能够将几组看不出任何联系的数据,通过视觉上可以接受的定位图展现出来。
它最大特点是能把众多的样品和众多的变量同时作到同一张图解上,将样品的大类及其属性在图上直观而又明了地表示出来,具有直观性。另外,它还省去了因子选择和因子轴旋转等复杂的数学运算及中间过程,可以从因子载荷图上对样品进行直观的分类,而且能够指示分类的主要参数(主因子)以及分类的依据,是一种直观、简单、方便的多元统计方法。
二对应基本思想
对应分析的基本思想是将一个联列表的行和列中各元素的比例结构以点的形式在较低维的空间中表示出来。它最大特点是能把众多的样品和众多的变量同时作到同一张图解上,将样品的大类及其属性在图上直观而又明了地表示出来,具有直观性。
另外,它还省去了因子选择和因子轴旋转等复杂的数学运算及中间过程,可以从因子载荷图上对样品进行直观的分类,而且能够指示分类的主要参数(主因子)以及分类的依据,是一种直观、简单、方便的多元统计方法。
我们归纳可以分为点:
Ø 首先,编制两品质型变量的交叉列联表,将交叉列联表中的每个数据单元看成两变量在相应类别上的对应点;
Ø 然后,对应分析将变量及变量之间的联系同时反映在一张二维或三维的散点图上,并使联系密切的类别点较集中,联系疏远的类别点较分散;
Ø 最后,通过观察对应分布图就能直观地把握变量类别之间的联系.
对应分析方法的优缺点
Ø 定性变量划分的类别越多,这种方法的优越性越明显
Ø 揭示行变量类间与列变量类间的联系
Ø 将类别的联系直观地表现在图形中
Ø 不能用于相关关系的假设检验
Ø 维数有研究者自定
Ø 受极端值的影响
三对应分析的主要步骤
对应分析法整个处理过程由两部分组成:表格和关联图。
对应分析法中的表格是一个二维的表格,由行和列组成。每一行代表事物的一个属性,依次排开。列则代表不同的事物本身,它由样本集合构成,排列顺序并没有特别的要求。
在关联图上,各个样本都浓缩为一个点集合,而样本的属性变量在图上同样也是以点集合的形式显示出来。
四利用SAS应用:对应分析
以sasuser中的cars为例,此例中,被访者要求提供他们汽车和个人情况的信息,包括汽车的原产国和家庭地位等。
1. 简单对应分析:
简单的对应分析处理由若干行和列组成的列联表。选择cars数据集和correspondence analysis,点击OK。
进入变量界面后,选择origin,即汽车的原产国作为列变量(column),选择marital,即家庭状况,作为行变量(row),分析类型选择简单对应分析(simple correspondence analysis),结果如下:
此图是用新的两个维度来解释行变量和列变量,类似主成分分析,第一维度,或者第一主成分,可以称为“原产地维度”,第二维度可以称为“家庭状况维度”。可以看出,married和single两个点最接近,注意比较只能在列变量之间,或者行变量之间。但是若将每个点做与原点之间的连线后,会发现,american这条线与married w kids这条线之间的距离最近。可以通过结果菜单中的惯量表(显示每个维度的信息)、统计、频数等来查看更多结果。
2. 多维一致分析
回到变量界面,选择多维一致性分析(multiple correspondence analysis),多维一致性分析只需要列变量,将origin,type,size,home,sex,income,和marital选入列变量,点击OK。通过惯量表可知,此时一共用了12个维度。
图中只显示了第一维和第二维的关系,如果想加入更多维度,可以在变量窗口中用“选项”按钮添加,接着右击图,图形—坐标轴变量,可以改变x,y轴的维度。
五对应分析图解七种方式
对应分析是一种多元相依变量统计分析技术,通过分析由定性变量构成的交互汇总表来揭示变量间的联系。可以揭示同一变量的各个类别之间的差异,以及不同变量各个类别之间的对应关系,所有对于交汇出来的图表展示和解释也相当介绍,这里给大家简单介绍七种.
以下文章内容的图片来自:百度文库<对应分析>PPT介绍,作者不详.
第一:距离定理
第二余弦定理
第三原点定理
第四象限分析
第五发展方向
第六细分角度
第七圆心定理
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17