
SAS市场研究应用介绍:对应分析
一.对应分析(Correspondence analysis)介绍
前二周我们简单讲了SAS市场研究应用,联合分析与离散选择偏好。
组合分析用来评价消费者偏好。如果将产品看成一些属性的组合,那么组合分析可以决定哪种属性对决定产品偏好最重要,以及哪种属性水平的组合是最受偏好的。
组合分析是用来发掘消费者的偏好,指出了消费者将选择购买哪种组合。在市场研究中,消费者实际做的选择是一种利益行为,那么用离散选择分析方法来直接分析消费者的选择是明智的。
但在市场研究中常常会遇到分类数据,那么对应分析是一种可以在列联表中生动呈现出纵列关系的工具。
本周带大家认识下对应分析,帮助大家以后在市场研究碰到并解决分类数据的快速实现方法。
对应分析(Correspondence analysis)也称关联分析、R-Q型因子分析,是近年新发展起来的一种多元相依变量统计分析技术,通过分析由定性变量构成的交互汇总表来揭示变量间的联系。可以揭示同一变量的各个类别之间的差异,以及不同变量各个类别之间的对应关系。
主要应用在市场细分,市场研究、产品定位、地质研究以及计算机工程等领域中。原因在于,它是一种视觉化的数据分析方法,它能够将几组看不出任何联系的数据,通过视觉上可以接受的定位图展现出来。
它最大特点是能把众多的样品和众多的变量同时作到同一张图解上,将样品的大类及其属性在图上直观而又明了地表示出来,具有直观性。另外,它还省去了因子选择和因子轴旋转等复杂的数学运算及中间过程,可以从因子载荷图上对样品进行直观的分类,而且能够指示分类的主要参数(主因子)以及分类的依据,是一种直观、简单、方便的多元统计方法。
二对应基本思想
对应分析的基本思想是将一个联列表的行和列中各元素的比例结构以点的形式在较低维的空间中表示出来。它最大特点是能把众多的样品和众多的变量同时作到同一张图解上,将样品的大类及其属性在图上直观而又明了地表示出来,具有直观性。
另外,它还省去了因子选择和因子轴旋转等复杂的数学运算及中间过程,可以从因子载荷图上对样品进行直观的分类,而且能够指示分类的主要参数(主因子)以及分类的依据,是一种直观、简单、方便的多元统计方法。
我们归纳可以分为点:
Ø 首先,编制两品质型变量的交叉列联表,将交叉列联表中的每个数据单元看成两变量在相应类别上的对应点;
Ø 然后,对应分析将变量及变量之间的联系同时反映在一张二维或三维的散点图上,并使联系密切的类别点较集中,联系疏远的类别点较分散;
Ø 最后,通过观察对应分布图就能直观地把握变量类别之间的联系.
对应分析方法的优缺点
Ø 定性变量划分的类别越多,这种方法的优越性越明显
Ø 揭示行变量类间与列变量类间的联系
Ø 将类别的联系直观地表现在图形中
Ø 不能用于相关关系的假设检验
Ø 维数有研究者自定
Ø 受极端值的影响
三对应分析的主要步骤
对应分析法整个处理过程由两部分组成:表格和关联图。
对应分析法中的表格是一个二维的表格,由行和列组成。每一行代表事物的一个属性,依次排开。列则代表不同的事物本身,它由样本集合构成,排列顺序并没有特别的要求。
在关联图上,各个样本都浓缩为一个点集合,而样本的属性变量在图上同样也是以点集合的形式显示出来。
四利用SAS应用:对应分析
以sasuser中的cars为例,此例中,被访者要求提供他们汽车和个人情况的信息,包括汽车的原产国和家庭地位等。
1. 简单对应分析:
简单的对应分析处理由若干行和列组成的列联表。选择cars数据集和correspondence analysis,点击OK。
进入变量界面后,选择origin,即汽车的原产国作为列变量(column),选择marital,即家庭状况,作为行变量(row),分析类型选择简单对应分析(simple correspondence analysis),结果如下:
此图是用新的两个维度来解释行变量和列变量,类似主成分分析,第一维度,或者第一主成分,可以称为“原产地维度”,第二维度可以称为“家庭状况维度”。可以看出,married和single两个点最接近,注意比较只能在列变量之间,或者行变量之间。但是若将每个点做与原点之间的连线后,会发现,american这条线与married w kids这条线之间的距离最近。可以通过结果菜单中的惯量表(显示每个维度的信息)、统计、频数等来查看更多结果。
2. 多维一致分析
回到变量界面,选择多维一致性分析(multiple correspondence analysis),多维一致性分析只需要列变量,将origin,type,size,home,sex,income,和marital选入列变量,点击OK。通过惯量表可知,此时一共用了12个维度。
图中只显示了第一维和第二维的关系,如果想加入更多维度,可以在变量窗口中用“选项”按钮添加,接着右击图,图形—坐标轴变量,可以改变x,y轴的维度。
五对应分析图解七种方式
对应分析是一种多元相依变量统计分析技术,通过分析由定性变量构成的交互汇总表来揭示变量间的联系。可以揭示同一变量的各个类别之间的差异,以及不同变量各个类别之间的对应关系,所有对于交汇出来的图表展示和解释也相当介绍,这里给大家简单介绍七种.
以下文章内容的图片来自:百度文库<对应分析>PPT介绍,作者不详.
第一:距离定理
第二余弦定理
第三原点定理
第四象限分析
第五发展方向
第六细分角度
第七圆心定理
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03