SAS市场研究应用介绍:对应分析
一.对应分析(Correspondence analysis)介绍
前二周我们简单讲了SAS市场研究应用,联合分析与离散选择偏好。
组合分析用来评价消费者偏好。如果将产品看成一些属性的组合,那么组合分析可以决定哪种属性对决定产品偏好最重要,以及哪种属性水平的组合是最受偏好的。
组合分析是用来发掘消费者的偏好,指出了消费者将选择购买哪种组合。在市场研究中,消费者实际做的选择是一种利益行为,那么用离散选择分析方法来直接分析消费者的选择是明智的。
但在市场研究中常常会遇到分类数据,那么对应分析是一种可以在列联表中生动呈现出纵列关系的工具。
本周带大家认识下对应分析,帮助大家以后在市场研究碰到并解决分类数据的快速实现方法。
对应分析(Correspondence analysis)也称关联分析、R-Q型因子分析,是近年新发展起来的一种多元相依变量统计分析技术,通过分析由定性变量构成的交互汇总表来揭示变量间的联系。可以揭示同一变量的各个类别之间的差异,以及不同变量各个类别之间的对应关系。
主要应用在市场细分,市场研究、产品定位、地质研究以及计算机工程等领域中。原因在于,它是一种视觉化的数据分析方法,它能够将几组看不出任何联系的数据,通过视觉上可以接受的定位图展现出来。
它最大特点是能把众多的样品和众多的变量同时作到同一张图解上,将样品的大类及其属性在图上直观而又明了地表示出来,具有直观性。另外,它还省去了因子选择和因子轴旋转等复杂的数学运算及中间过程,可以从因子载荷图上对样品进行直观的分类,而且能够指示分类的主要参数(主因子)以及分类的依据,是一种直观、简单、方便的多元统计方法。
二对应基本思想
对应分析的基本思想是将一个联列表的行和列中各元素的比例结构以点的形式在较低维的空间中表示出来。它最大特点是能把众多的样品和众多的变量同时作到同一张图解上,将样品的大类及其属性在图上直观而又明了地表示出来,具有直观性。
另外,它还省去了因子选择和因子轴旋转等复杂的数学运算及中间过程,可以从因子载荷图上对样品进行直观的分类,而且能够指示分类的主要参数(主因子)以及分类的依据,是一种直观、简单、方便的多元统计方法。
我们归纳可以分为点:
Ø 首先,编制两品质型变量的交叉列联表,将交叉列联表中的每个数据单元看成两变量在相应类别上的对应点;
Ø 然后,对应分析将变量及变量之间的联系同时反映在一张二维或三维的散点图上,并使联系密切的类别点较集中,联系疏远的类别点较分散;
Ø 最后,通过观察对应分布图就能直观地把握变量类别之间的联系.
对应分析方法的优缺点
Ø 定性变量划分的类别越多,这种方法的优越性越明显
Ø 揭示行变量类间与列变量类间的联系
Ø 将类别的联系直观地表现在图形中
Ø 不能用于相关关系的假设检验
Ø 维数有研究者自定
Ø 受极端值的影响
三对应分析的主要步骤
对应分析法整个处理过程由两部分组成:表格和关联图。
对应分析法中的表格是一个二维的表格,由行和列组成。每一行代表事物的一个属性,依次排开。列则代表不同的事物本身,它由样本集合构成,排列顺序并没有特别的要求。
在关联图上,各个样本都浓缩为一个点集合,而样本的属性变量在图上同样也是以点集合的形式显示出来。
四利用SAS应用:对应分析
以sasuser中的cars为例,此例中,被访者要求提供他们汽车和个人情况的信息,包括汽车的原产国和家庭地位等。
1. 简单对应分析:
简单的对应分析处理由若干行和列组成的列联表。选择cars数据集和correspondence analysis,点击OK。
进入变量界面后,选择origin,即汽车的原产国作为列变量(column),选择marital,即家庭状况,作为行变量(row),分析类型选择简单对应分析(simple correspondence analysis),结果如下:
此图是用新的两个维度来解释行变量和列变量,类似主成分分析,第一维度,或者第一主成分,可以称为“原产地维度”,第二维度可以称为“家庭状况维度”。可以看出,married和single两个点最接近,注意比较只能在列变量之间,或者行变量之间。但是若将每个点做与原点之间的连线后,会发现,american这条线与married w kids这条线之间的距离最近。可以通过结果菜单中的惯量表(显示每个维度的信息)、统计、频数等来查看更多结果。
2. 多维一致分析
回到变量界面,选择多维一致性分析(multiple correspondence analysis),多维一致性分析只需要列变量,将origin,type,size,home,sex,income,和marital选入列变量,点击OK。通过惯量表可知,此时一共用了12个维度。
图中只显示了第一维和第二维的关系,如果想加入更多维度,可以在变量窗口中用“选项”按钮添加,接着右击图,图形—坐标轴变量,可以改变x,y轴的维度。
五对应分析图解七种方式
对应分析是一种多元相依变量统计分析技术,通过分析由定性变量构成的交互汇总表来揭示变量间的联系。可以揭示同一变量的各个类别之间的差异,以及不同变量各个类别之间的对应关系,所有对于交汇出来的图表展示和解释也相当介绍,这里给大家简单介绍七种.
以下文章内容的图片来自:百度文库<对应分析>PPT介绍,作者不详.
第一:距离定理
第二余弦定理
第三原点定理
第四象限分析
第五发展方向
第六细分角度
第七圆心定理
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13