京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SAS市场研究应用介绍:多维偏好分析
多维偏好分析(multidimensional preference analysis)介绍
在联合分析中,被访者需要描述他们对产品的偏好情况,这些产品有若干实验者事先决定的属性。但有时候,这些属性并不为被访者所知,多维偏好分析(multidimensional preference analysis,简称MDPREF)就是分析这种情况下产生的数据。
有时,在市场调研,现有的数据包括消费者的喜好,为产品的属性没有定义。多维偏好分析(MDPREF)是用来分析这些数据。 MDPREF分析是符合消费者与产品对应的行与列的数据矩阵的主成分分析。在一个情节,揭示了消费者对产品的偏好模式的分析结果。以下是一些回答问题,可以用一个多维偏好分析。
多维偏好分析常用于分析消费者对产品与服务的偏好倾向,在市场研究中能具体解决如下问题:
a) 圈定目标消费群体
b) 市场上哪些品牌的竞争激烈
c) 探索市场的空白区域
d) 消费群体的分类
e) 品牌评价
二多维偏好分析基本思想与过程
多维偏好分析通过收集消费者对一组产品/服务的偏好数据(以0-10/1-10的量表).,然后用降维(主成分分析)的思想,将多元数据变成通过二维图形显示的直观结果。
多维偏好分析采用的统计思想就是主成分分析法,因而必须对主成分分析法有一个初步的了解。主成分分析法就是将原来众多具有一定相关性的指标(如p个指标),重新组合成一组新的相互无关的综合指标来代替原来的指标。
分析的主要过程:
三SAS中操作案例
MDPREF是一种主成分分析,矩阵中的列对应着人,行对应着要研究的主题,如汽车的偏好。是一个人*主题的转置,分析时注意格式要正确。
以SASUSER中的CARPREF为例,数据储存了25个被访者对17种汽车偏好的数据,偏好有0-9级得取值,0代表非常弱的偏好,9代表非常强的偏好。选择数据集和分析方法后进入变量窗口:
按照上图,将judge1-25选入preference窗口等,维度的选择可以增加,scree plot提供了每个主成分的特征值,可以参考判断选择几个维度。此例中,两个维度足够。点击OK,结果如下图所示:
结果图中包含了17种汽车点,25个被访者向量。两个维度的解释为:1)竖直维度将外国和国产车分开,正数代表外国车,负数多为国产车(美国?)。2)水平维度将大型车和小型车分开,右边多是大型车,左边多是小型车。每个被访者都偏好与接近他们向量的车型。但是注意右上部分,有很多的向量,但是却没有车型,这恰恰说明了市场空缺,还未出现有效产品来满足这部分消费者需求。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30