近期,许多大企业信息技术部总管表示,聘用资优数据人才非常困难。而美国高等学府每年培养的数据人才也只有区区千人,每个毕业生就有四家公司提供聘书。
《华尔街日报》11月11日报导说,“大数据”(Big Data)时代来临,公司急需的数据家不仅需要拥有工程知识和商业能力,还需对数据有敏锐的感觉,这样他们才能胜任分析和处理“大数据”公司提供的各项数据和信息。
与此同时,高等学府也正在努力提供同时涉及多个领域的课程,希望能籍此培养出更多的数据专才。这些课程鼓励学生拓宽思路,启发他们利用科技和商业工具,从而成为合格的数据家。
不过,对于大学院校来说,要培养出同时在数学、计算机和商科等数个领域内具有很强能力的学生实属不易。美国第一批提供数据学课程的大学之一、北卡州立大学高等分析学院(Institute for Advanced Analytics at North Carolina State University)创始人拉帕(Michael Rappa)表示,传统大学的结构并不利于跨科目的教育方式。
麦肯锡全球机构(McKinsey Global Institute)顾问Michael Chui在上周戴尔公司举办的一项客户活动中发言表示,到2018年,将会出现14万至18万个数据家空缺。对于信息技术长官们,这样的情况自然不能接受。他们需要数据家来解开深藏在公司数据中的商业信息和价值。
在SunTrust Banks Inc银行任职信息主管的薛立言(Anil Cheriyan)表示,数据家的职位由两人担任。一位数据能力强的工作人员先以深度的商业知识和经验将数据进行归类、整合和管理。然后,另一位致力分析的工作人员采用数据模型和数据挖掘的方式来对客户分类,或研究有关产品、风险等方面的课题。薛立言认为,要找到一个人有能力同时涉足这两大领域非常困难。不过他相信,随着这个领域的发展和成熟,这样的全面型人才逐渐会出现。该行已经开始将数据处理和分析这两个领域的工作人员一起培训了。
美国密西西比大学医疗中心(The University of Mississippi Medical Center)信息主管周大卫(David Chou)表示,他们聘用了不少可以分析数据的研究员,但是他们不懂如何将这些分析用来实质改善对病人的照看料理。“他们不具备这方面的能力。”
北卡州立大学高等分析学院的创始人拉帕表示,要想具备这些能力,关键是采用跨部门的学习和培训。在他们的学院,学生必须花整整十个月,一周五天,朝九晚五,主修应用数学、统计、计算机、金融和市场学。其中许多课目是一个数据家应当暸解的内容。学院会提供给学生来自政府的真实、但隐去真名实姓的数据,让他们分析并解决经营方面的具体问题。自2007年建立以来,该校已有340名毕业生,还有85名将在2015年毕业。平均每个毕业生获得四家公司的聘书。
《华尔街日报》引述拉帕说,美国大约有70家高等学府教授类似的分析课程,其中包括西北大学(Northwestern University)、纽约大学(New York University)和哥伦比亚大学(Columbia University),每年大约产生1000名数据家,完全不能满足市场需求。
尽管企业和大学都在努力培养数据人才,但是也有专家认为数据分析还是需要依赖软件,没有必要花费大力气培养这么多的专业人士,企业不用如此“小题大做”。
拉帕先生不赞同这样的说法。他认为,计算机可以处理比较简单的工作,但是数据家们必须在使用和分析数据时保持创新的态度,才能应对经营方面不断出现的新挑战。
互联网、社交网站、电子商务等新一代技术的广泛应用催生了“大数据”。“大数据”(Big Data)指巨量数据的集合。大数据具有多样化和海量的特点,而且无法用常规软件工具分析。西方企业开始认识到,善用“大数据”将成为提高核心竞争力的关键。卡内基梅隆大学(Carnegie-Mellon University)海因兹学院(Heinz College)院长克里希南教授(Ramayya Krishnan)说,“大数据”具有催生社会变革的能量。但是释放这样能量,需要严谨的数据家、富有洞见的数据分析和激发管理创新的环境。(文章来源:CDA数据分析师培训官网)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31