企业里真实的数据分析案例解析
从最近跟进一些数据分析项目来看,慢慢对数据分析有了更多的理解。
数据分析的定义和误区:
数据分析,简单来说就是用数据进行分析。经验分析也是分析,但这是靠经验分析的,不是数据分析。数据分析就必须是通过数据进行推导或验证的。所以任何数据分析工具都是数据分析的工具,不管是Excel,spss或BI都是数据分析的工具,甚至说用计算器做分析也可以是数据分析。也就证明了一些人说Excel就是报表,而不是数据分析,这是错的。
网上看最多的流程是这样的。
但其实这样才是更合理的,
数据分析不一定是一次性的,是分次数的。第一次分析会得到一些结论和猜想,然后要收集更多数据来证实自己的猜想,不然就是猜想,和经验判断没什么区别的。
数据分析如何落地
数据分析只有落地,才有价值,不然数据还是数据,还浪费了人力,物力和财力。按我公司数据分析大牛的话来讲,数据分析首先是发现问题,然后是定位问题,最后是解决问题。
1.发现异常:
发现问题就是说看出数据的波动性和不正常性。看出数据的不正常,首先要定义怎么样的数据算不正常,和平时误差的波动对比是多少,平时的数据如何定义。(补充电商很多数据都是定义波动在+- 10%内为正常,平时是指近2周的平均数据)。举个例子:本来某网站某内部渠道A的订单转化率维持是4-5%左右。有一天突然变成了2%,而近2周的数据因为前几天的数据库异常,只有近8天的数据。那怎么办呢?难道说没2周,所以问题无法发现?
这时大牛告诉我,书本上和网上你所看到的数据都是完美的,但你现在遇到的就是现实,现实就是只有近8天的数据,你这次也就只能算近8天,或者近7天。以后积累数据更多后,你分析时才用近2周。要接受数据的不完美,以后你还会遇到很多数据上的bug。那就按近7天的订单转化率去算吧。这里补充一点:订单转化率的定义=订单/二跳Visits。这点定义,不同公司定义不同,但有一点是肯定的,因为是个比率值,所有近7天的平均订单转化率不是拿近7天订单转化率算平均,而是近7天的订单数平均/近7天的二跳Visits。
总算算出来了,近7天平均订单转化率是4.5%,昨天的订单转化率是2%,变化幅度明显超过10%,绝对是个异常。
2.定位异常:
如何定位异常,大牛说你是新手,所以你去分析各个细分维度,看哪个维度内部之间有很大变化。我把能分析的维度全都做了一遍,流量外部渠道,流量平台,流量访问地区,流量进入的商品类目。因为我的Excel功底很好,这些数据处理我较快滴就完成了,然后对大牛说,外部渠道订单转化率都在降,平台,地区和商品类目转化率也都是下降,而且之间下降的幅度都是差不多的。他说,如果都是在降的话,那说明问题不是在这里。只有某个维度内部之间,变化有较大悬殊的,才能定位到问题在这个维度。比如假设,刚才的维度中你发现平台中,PC转化率大跌,无线转化率基本没变化。那说明问题很可能出在网页上面。很可能是订单确认页的网页日志记录有问题,然后被记录的订单数少了。订单转化率=订单数/二跳Visits。分子少了,也就转化率低了。而你现在是都没什么差异,那你去看看网站的订单转化率是怎么样的,还有其他内部渠道的订单转化率变化吧。我很快去提取数据并计算了,整体网站转化率没什么变化,二跳Visits流量也没什么变化。但是内部渠道中有个内部渠道C,他的转化率提升了很多,但他的流量没什么大变化。大牛说,那问题差不多出来了,很可能是内部渠道A的订单数被错误计算到渠道C了。正常情况,每个渠道的转化率都是不怎么变化的,而且你都说流量没什么变化了。是要到解决问题的时候了。
3.解决异常:
可以让IT同事看看网页日志,是不是有流量被混入到渠道C了。一个比较简单的案例到此,差不多结束了。
首先要学会接受数据的不完美,哪怕要2周,如果只有1周,也只能先当5天算。
第二了解对比要可比计算近1周或近2周的平均数据前,都要先判断有没异常值出现。
第三,发现问题后要去进行维度拆分,维度内部差异很大的,才是问题的关键点所在。
第四,除了纵向对比日期外,还有想到横向对比同级渠道,还有考虑他们上面的整体。
你目前先慢慢学会对内部渠道A进行日监控,然后有异常数据能识别,然后去定位问题。你的自动化报表设计很不错,能大大减少每天的数据处理时间,也就有更多时间去定位和分析问题。解决问题,一般来说都是比较麻烦的,要涉及跨部门的沟通交流,很多都不是数据能解决的。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20