数据工作者数据之路:从洞察到行动
数据时代来临,人人都说大数据分析,可是说到未必做到,真正能从数据中获得洞察并指导行动的案例并不多见,数据分析更多的是停留在验证假设、监控效果的层面,通过数据分析获得洞察的很少,用分析直接指导行动的案例更是少之又少。
从洞察到行动,数据可以发挥更大价值,前提是我们对数据分析有更深层的认知。
分析的四个层次
个人理解,数据分析是分层次的,从开始数据分析到促成行动达成目标,需要经历很多阶段,从上至下对应的分析层次包括:表象层、本质层、抽象层和现实层。
表象层,就像汽车仪表盘,实时告诉你发生了什么,并适时做个警报提示等等,是what。分析师要做的事情就是搭建指标体系,进行各种维度的统计分析。
本质层,像诊断仪,不再停留在观察肉眼可见的表面症状,而是去检测身体内部的问题,这个层面要揭露现象背后的动因,找到规律,是why。主要做的事情就是进行个案分析获得需求动机层面的认知,然后对个体进行聚类获得全面的洞察。
抽象层,是特殊到一般的过程,对业务问题进行抽象,用模型去刻画业务问题,是how。这个层面做的事情就是把问题映射到模型,然后再用模型去做预测,减少不确定性。其产出主要是分类(标签)和排序(评分)。
现实层,是一般到特殊的过程,将抽象的模型套用到现实中来,告诉大家如何去行动,是when、where、who and whom。就像航标,要时刻为业务保驾护航,指导业务的行动。其产出主要是规则和短名单。
在明确分析的层次后,要想从洞察到行动,需要做到四个层次的穿透和每个层次的深入。首先,分析要能够穿透各个层次,只有上下贯通,数据分析的价值才能立竿见影。其次,在分析的每个层次上要做的深入。
一、在表象层,看数据要深入。主要体现在两个方面:
1. 从“点“到”线面体“,从看一个点的数据,到看线,看面,看体。
一般来讲,想看数据的人潜意识里是要成“体”的数据的,只是沟通过程中变成了“点”的需求,因为“点”简单容易讲明白,但是,这次给不了“体”的数据,下次还会围绕“体”的数据提各种“点”的需求,这个时候我们需要延伸一下,提前想需求方之所想,就不用来回往复了。
2. 关注数据之间的逻辑关系
这方面最值得借鉴的就是平衡计分卡了,平衡计分卡从数据指标的角度去看,就是一套带有因果关系的指标体系。
平衡计分卡通过Strategy Map把策略说清楚讲明白,通过KPI进行有效的衡量,被评价为“透视营运因果关系的绩效驱动器”(政大会计系教授 吴安妮),“将策略化为具体行动的翻译机”(台大会计系教授 杜荣瑞)。
平衡计分卡对我们的启发是,人人可以梳理出一套和自己业务相关的有逻辑关系的数据指标体系,通过它实现聚焦和协同。
二、在本质层,深入理解业务模式,并跳出既有的思维模式,建立新的心智模型。
比如我们看淘宝,淘宝业务的本质是什么呢?其中一个答案是复杂系统。
大家都知道,淘宝是一个生态系统,淘宝是一个典型的由买家、卖家、ISV、淘女郎等各种物种构成的复杂系统,阿里巴巴是一个更大的复杂系统。
复杂系统对我们的启发是,关注个体(系统内部买家卖家等参与者)的同时,注意分析个体在群体中位置和角色,分析群体的发展潜力、演化规律、竞争度、成熟度等,分析群体和群体之间关系。同时,对应的抽象层建模的方法也要与之适配。
三、在抽象层,微观上构建更加抽象的特征,宏观上构建更加抽象的模型。
1. 在既有的分析和挖掘框架下,构建更加抽象的特征(也可以理解成维度、指标)。
这个可以类比现在最火的Deep Learning技术,如果对一个图片进行识别,即使你获取的是像素信息,深度学习可以自动学习出像素背后的形状、物体的特征等中间知识,越上层的特征越接近真相。
1、对我们的启示就是,在交易笔数交易金额这种“像素级别”特征(指标)的基础上,可以考虑是否交易笔数连续上升、营销活动交易占比等带有业务含义,更加抽象同时接近业务的特征(指标)。用抽象的特征去建模可以提升模型的效果,用抽象的指标去分析可以更贴近业务需求。
2.宏观方面,可以用更加抽象的方式对业务进行建模
在前面提到淘宝是复杂系统,我们也可以对复杂系统进行建模。做些适当的简化,对淘宝做一个高度抽象,那就是一个字“网”。节点是买家、卖家等物种,边就是购买、收藏、喜欢等行为产生的关系。整个淘宝就是一张大网。
图注: 不同的颜色表示不同的细分互动市场,点代表的是店铺或者会员,连线表示会员是店铺的熟客,点的大小对店铺而言代表店铺的熟客数,对会员而言代表常购买的店铺数,越接近图的中心越表示大众化的需求,越接近图的边缘越体现需求的个性化。
建立这张大网之后,我们就可以做深入的分析,比如市场细分,个性化推荐等等。
四、在现实层,要深入到业务中去,不断提升对相关业务的认知能力。
心态上不要自我设限,分析无边界,分析师要主动参与到业务模式、产品形态的规划和设计去。要了解业务,在此基础上灵活运用模型的产出,比如:一个风险控制策略,假如已经有一个风险事件打分模型对风险事件打分排序,分析师可以根据业务需求灵活设计模型的使用策略,例如,对于风险得分最高的时间,机器自动隔离,风险得分偏高的,用机器+人工审核的半自动方式进行隔离。模型是死的,活用靠人。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21