京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据可视从数据探索到工程落地
加快推动从数据探索到工程落地的过程是一件很有意义的事情,数据分析要如何做到尽量和数据分析的流程紧密结合,又要方便工程化落地一直困扰着许多数据分析师和Web工程师。数据分析师不想深究太多前端JS实现,Web工程师也不想插手复杂的业务逻辑与SQL。对于工程化这件事情,如果数据分析输出的图表是基于html的,那Web工程师只需要复制粘贴相应的js配置项然后引用一下js库就完成70%的工作了。但是对于数据探索来说,大部分的数据可视过程70%的工作可能都是失败、或者暂时的,花费大量精力完成的前端代码并不会对数据分析这件事情本身带来太多帮助。但是现实世界并没有这么美好,很多时候身兼数职的全能王倒是因为会给老板省钱受到青睐,本文将讨论几种可能的解决方案。
可能的解决方案
数据分析师+交互式绘图
常见的方式比如radiant(R)、caravel(Python)都具有这样的功能,数据分析师可以建立一个数据库连接,然后在连接中通过SQL语句得到想要的数据,再通过交互式的绘图方式完成数据可视化的探索。
优势:让数据分析师可以集中精力在数据分析本身,可以快速实现数据探索、建模、甚至分享页面和仪表盘。
劣势:复杂的数据分析算法实现起来比较困难,数据需要事先规整清晰好,满足多维数据分析条件才行,前端绘图库无法比较困难,整体定制性较弱。
数据分析师写JS
第一种方案建立在交互式绘图工具足够好用的基础上,对于很多非主流的startup并不一定完全适用,因为startup人手有限,很可能要求数据分析师有能自行解决前端数据可视化的能力需求。
常见的方式是通过SQl取数后调用一个JS制图库(比如echarts、highcharts、plotly等等),分析师需要在js中完成许多数据描述性统计的工作直接展示在前端页面上,然后将配置项和SQL保存在数据库中,以供后续的API查询调用。
优势:简化了数据产品落地的流程,在SQL不够用的情况下可以用JS来补足,可以快速实现定制化的前端图表输出,满足各种可视化特殊需求。
劣势:简单的数据分析算法实现也很困难,数据分析很难专注于数据本身,需要处理很多JS相关问题。
数据分析师写R
上述两种方案在数据处理上都并不是非常完美,所以说,更加理想的方案是通过用一种数据分析语言完成数据分析和数据可视的工作,既要保证数据分析的灵活性,又要保证工程落地的敏捷性变成一个很关键的事情。但是通常自己写前端JS的代码又非常的麻烦,可能还要写很多MapReduce。一些常见的描述性统计(极值均值求和计数等等)在前端实现都会耗费很多功夫,更不用说更高级的一些算法了,而大部分数据分析工作在Python或者R语言中其实是可以快速完成。那么,从Python和R中直接输出一些html图表不失为一种好的办法,当然更多场景下我是建议用R来完成。
优势:既能满足复杂的算法模型快速实现,又能满足工程敏捷落地的需求。
劣势:对于简单分析而言,不如方案一来得方便,快捷。
具体方案
在R中,我们其实可以使用 DT + ggplot2 + plotly + flexdashboard 的方案来完成数据分析图表的绘制和产出。首先,在探索分析的过程中可以使用ggplot2对数据进行各种分组暂时,这样就保证了数据分析结果维度的丰满,通过 + 的链式调用,可以在同一基础图形上变换多种展现方式进而得到更多多维分析结果。其次,利用 plotly,ggplot2 所绘制的静态图表可以快速拓展为动态图表。最后,通过 flexdashboard,可以快速排版数据可视化结果,提供一个Web服务作为输出。
简单例子
knitr::opts_chunk$set(echo = TRUE)
library(readxl)
library(dplyr)
竞品分析列表 <- read_excel("~/竞品分析列表.xls",col_names = T)
colnames(竞品分析列表) <- 竞品分析列表[1,]
竞品分析列表 <- 竞品分析列表[-1,]
DT::datatable(竞品分析列表)
library(ggplot2)
# 频数统计
p <- ggplot(data=地区频数, aes(x=地区,y=频数,fill=大小)) +
geom_bar(stat = "identity",alpha = 0.8) +
labs(x = '地区', y = '频数') +
ggtitle("地域分布") +
coord_flip() +
theme(text = element_text(family = 'SimSun'))
p
library(plotly)
ggplotly(p)
只需要修改一下 yaml 配置并引入 flexdashboard 即可
---
title: "竞品分析"
author: "Harry Zhu"
date: "September 17, 2016"
output:
flexdashboard::flex_dashboard:
orientation: columns
vertical_layout: fill
---
knitr::opts_chunk$set(echo = TRUE)
library(flexdashboard)
library(readxl)
library(dplyr)
竞品分析列表 <- read_excel("~/竞品分析列表.xls",col_names = T)
colnames(竞品分析列表) <- 竞品分析列表[1,]
竞品分析列表 <- 竞品分析列表[-1,]
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23