数据可视从数据探索到工程落地
加快推动从数据探索到工程落地的过程是一件很有意义的事情,数据分析要如何做到尽量和数据分析的流程紧密结合,又要方便工程化落地一直困扰着许多数据分析师和Web工程师。数据分析师不想深究太多前端JS实现,Web工程师也不想插手复杂的业务逻辑与SQL。对于工程化这件事情,如果数据分析输出的图表是基于html的,那Web工程师只需要复制粘贴相应的js配置项然后引用一下js库就完成70%的工作了。但是对于数据探索来说,大部分的数据可视过程70%的工作可能都是失败、或者暂时的,花费大量精力完成的前端代码并不会对数据分析这件事情本身带来太多帮助。但是现实世界并没有这么美好,很多时候身兼数职的全能王倒是因为会给老板省钱受到青睐,本文将讨论几种可能的解决方案。
可能的解决方案
数据分析师+交互式绘图
常见的方式比如radiant(R)、caravel(Python)都具有这样的功能,数据分析师可以建立一个数据库连接,然后在连接中通过SQL语句得到想要的数据,再通过交互式的绘图方式完成数据可视化的探索。
优势:让数据分析师可以集中精力在数据分析本身,可以快速实现数据探索、建模、甚至分享页面和仪表盘。
劣势:复杂的数据分析算法实现起来比较困难,数据需要事先规整清晰好,满足多维数据分析条件才行,前端绘图库无法比较困难,整体定制性较弱。
数据分析师写JS
第一种方案建立在交互式绘图工具足够好用的基础上,对于很多非主流的startup并不一定完全适用,因为startup人手有限,很可能要求数据分析师有能自行解决前端数据可视化的能力需求。
常见的方式是通过SQl取数后调用一个JS制图库(比如echarts、highcharts、plotly等等),分析师需要在js中完成许多数据描述性统计的工作直接展示在前端页面上,然后将配置项和SQL保存在数据库中,以供后续的API查询调用。
优势:简化了数据产品落地的流程,在SQL不够用的情况下可以用JS来补足,可以快速实现定制化的前端图表输出,满足各种可视化特殊需求。
劣势:简单的数据分析算法实现也很困难,数据分析很难专注于数据本身,需要处理很多JS相关问题。
数据分析师写R
上述两种方案在数据处理上都并不是非常完美,所以说,更加理想的方案是通过用一种数据分析语言完成数据分析和数据可视的工作,既要保证数据分析的灵活性,又要保证工程落地的敏捷性变成一个很关键的事情。但是通常自己写前端JS的代码又非常的麻烦,可能还要写很多MapReduce。一些常见的描述性统计(极值均值求和计数等等)在前端实现都会耗费很多功夫,更不用说更高级的一些算法了,而大部分数据分析工作在Python或者R语言中其实是可以快速完成。那么,从Python和R中直接输出一些html图表不失为一种好的办法,当然更多场景下我是建议用R来完成。
优势:既能满足复杂的算法模型快速实现,又能满足工程敏捷落地的需求。
劣势:对于简单分析而言,不如方案一来得方便,快捷。
具体方案
在R中,我们其实可以使用 DT + ggplot2 + plotly + flexdashboard 的方案来完成数据分析图表的绘制和产出。首先,在探索分析的过程中可以使用ggplot2对数据进行各种分组暂时,这样就保证了数据分析结果维度的丰满,通过 + 的链式调用,可以在同一基础图形上变换多种展现方式进而得到更多多维分析结果。其次,利用 plotly,ggplot2 所绘制的静态图表可以快速拓展为动态图表。最后,通过 flexdashboard,可以快速排版数据可视化结果,提供一个Web服务作为输出。
简单例子
knitr::opts_chunk$set(echo = TRUE)
library(readxl)
library(dplyr)
竞品分析列表 <- read_excel("~/竞品分析列表.xls",col_names = T)
colnames(竞品分析列表) <- 竞品分析列表[1,]
竞品分析列表 <- 竞品分析列表[-1,]
DT::datatable(竞品分析列表)
library(ggplot2)
# 频数统计
p <- ggplot(data=地区频数, aes(x=地区,y=频数,fill=大小)) +
geom_bar(stat = "identity",alpha = 0.8) +
labs(x = '地区', y = '频数') +
ggtitle("地域分布") +
coord_flip() +
theme(text = element_text(family = 'SimSun'))
p
library(plotly)
ggplotly(p)
只需要修改一下 yaml 配置并引入 flexdashboard 即可
---
title: "竞品分析"
author: "Harry Zhu"
date: "September 17, 2016"
output:
flexdashboard::flex_dashboard:
orientation: columns
vertical_layout: fill
---
knitr::opts_chunk$set(echo = TRUE)
library(flexdashboard)
library(readxl)
library(dplyr)
竞品分析列表 <- read_excel("~/竞品分析列表.xls",col_names = T)
colnames(竞品分析列表) <- 竞品分析列表[1,]
竞品分析列表 <- 竞品分析列表[-1,]
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27