数据分析哪家强?听数据分析师论R和Excel
Excel 是一款很好用的数据分析工具,但是你分析数据时只有 Excel 这一款工具的话,则会大大影响工作效率。相比之下,R 工具更好用,而且提供的工具集模块更完整。
我从事数据分析工作已经有十年之久。最初是出于工作需要,我的经理给我一堆数据,我需要处理这些数据。当时我一直使用的工具是 Excel,因为这是我熟练掌握的一款工具。三年前,我开始接触到 R,一开始因为功能太多而坚决抵制使用。后来我开始琢磨如何使用。现在我基本不怎么使用 Excel 了。这只是我个人的观点,但是如果你要分析数据,R 更胜任这项任务。下面来说说为什么 R 更适合数据分析。
这两款工具的使用方法截然不同。使用 Excel 时,可以通过鼠标点击完成大部分工作,你可以访问界面内不同位置的各种工具。因此 Excel 非常便于使用(熟能生巧),但是用 Excel 处理数据非常费时,而且如果接手一个新项目,你必须单调地重复这些流程。使用 R 时,则通过代码完成所有操作。你把数据载入内存,然后运行脚本来研究并处理数据。这个工具可能不够人性化,但是有以下几点好处。
我认为,从概念上来说,R 更便于使用。如果你在处理多列数据,虽然你只是在处理单个任务,但是却会看到所有的数据。而使用 R 时,数据都在内存中,只有调出数据才能看到。如果你在转换或计算,你会处理相关列或行的子集,其他所有数据都在后台。我觉得这样更便于关注手头的任务。完成任务后,可将其保存在某个数据帧中,其中只包含所需的列或行数据。你建立了正确的数据集,可解决当前的问题。这样做看似无关紧要,但实际上大受裨益。
借助 R,就可以对其他数据集轻松重复相同的操作。因为所有数据都是通过代码进行处理和研究,因此对新的数据集执行相同的操作也就轻而易举了。使用 Excel 时,大多数操作都是通过鼠标点击实现,虽然用户体验不错,但对新的数据重复操作却非常费时而枯燥。而 R 只需载入新的数据集,然后再次运行脚本即可。
实际上,用代码操作也便于诊断并共享你的分析结果。使用 Excel 时,大多数的分析结果都基于内存(数据透视表在这里,公式编辑器在另一个表格上等)。而在 R 中,通过代码执行所有操作,一目了然。如果你在修正一个错误,你很清楚在哪里操作,而如果你需要共享分析结果,只需复制粘贴代码即可。在线查找帮助时,你能准确说明所用数据,并提出具体的问题。事实上,大多数时候,你在线提问时,人们都是直接贴出准确的代码,来解决你的问题。
R 中的项目组织更简单。在 Excel 中,我要准备一系列表格,可能还要准备多个工作簿,然后适当命名,而且各文件名不得重复。我的项目备注分别保存在各个文件中。我的 R 项目组织单独设有一个文件夹,我处理过的所有内容都放在其中。清理数据、探索性图表及模型。这样便于我理解和查找,也为与我一起工作的其他人提供方便。当然,Excel 也能做到井井有条。我觉得 R 的简洁性更便于使用。
上述几点只能说是锦上添花,而并不是必不可少。在没有这些功能之前,我也用了好几年 Excel,你应该也一样。现在,我想讲讲 R 和 Excel 真正的区别。我想说的是,除了以上那些花哨的小优势之外,R 更适合用于数据分析。原因如下。
你可以把任何数据载入 R。数据的保存位置或保存形式并不重要。你可以载入 CSV 文件,也可以读取 JSON,或者执行 SQL 查询,抑或提取网站。你甚至还可以在 R 中通过 Hadoop 处理大数据。
R 是一个完整的工具集,使用的是数据包。在分析数据时,R 比 Excel 更实用。你可使用 R 执行数据管理、分类和回归,也可以处理图片,并执行其他所有操作。如果机器学习是你的专业,那能想到的任何算法都是小菜一碟。目前,R 可用的数据包逾 5,000 个,因此无论你要处理什么类型的数据,R 都能应付自如。
R 的数据可视化效果非常卓越。说句实话,Excel 的图表非常出色,简单易懂。但 R 的效果更好。我觉得这是 R 最实用的功能之一。借助 ggplot2,你可以快速创建所需的各种图表,并根据图表形状自行调整。在你熟悉了如何用 ggplot2 创建一个图表后,任何其他图表都不在话下。ggplot2 还能制作更多类型的图表。你能用 Excel 创建散点图矩阵吗?用 R 就能轻松创建这种矩阵,CDF plot 也是如此。Excel 棋差一招。
Git 版本控制。我一向习惯保存多个版本的分析结果。Git 是至今为止我找到的最好用的工具。我使用 RStudio 作为编辑器,其支持项目。创建一个项目仓库,然后你就能跟踪数据研究的不同版本。你可以创建不同版本的 Excel 文件,但是这些保存的二进制文件无法显示相互之间的更改部分。而 R 非常简单。
我已经说了很多理由。总之,Excel 是一款不错的数据分析工具。我相信它能不负众望完成所有任务。但是,如果你只有这一款工具,则会大大影响你的工作效率。相比之下,R 更好用,而且提供的工具集模块更完整。而缺点在于不是非常易于上手,用户一开始相对要花很多时间学习使用。如果坚持下去,就会有所收获,不仅对数据更了解,还提高了自己的能力。
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16