数据分析中的Excel、R、Python、SPSS、SAS和SQL
作为一直想入门数据分析的童鞋们来说,如何选定一门面向数据分析的编程语言或工具呢?注意是数据分析,而不是大数据哦,数据分析是基础了。
数据分析的工具千万种,综合起来万变不离其宗。无非是数据获取、数据存储、数据管理、数据计算、数据分析、数据展示等几个方面。而被提到频率最高的如Excel、R、Python、SPSS、SAS、SQL等。那么,这些工具本身到底有什么特点呢,应该如何合理的使用来解决数据分析的各种问题?
最简单的是EXCEL,它不仅是简单的而且是必备的。正所谓初级学图表,中级学函数透视表,高级学习VBA。EXCEL功能的强大只有那些正真学过它的人才能知道,我们反对任何关于EXCEL复杂,不实用的说法。在学完VBA之后,EXCEL几乎能解决你在日常工作中遇到的所有问题。EXCEL是你成为数据分析师的必备条件。
对于一个初级的数据分析师来说,刚开始如果能精通SQL与Excel再会点SPSS之类的就差不多了。SPSS对用户的要求是只要会点击菜单就可以了,有编程窗口但是一般没人用,用户多是受到过一些统计训练的,但不需要高深的分析能力,市场调研用的比较多,统计专业的学生一般要求掌握。
再往后,你可能就需要精通一门统计分析软件了,一般说来如果是互联网行业可能R语言是最为流行,因为R语言是开源的,不过上手还是需要长期的学习;SPSS界面友好型,不过一般是市场研究用的比较多,如果你会用SPSS编程,其实功能还是比较强大的,建议如果想先练手可以学这个,上手快;SAS一般是金融企业特别是银行业和医学统计,银行业人员有一些是用SAS做统计,一般是银行业内部人做的,另一种是给银行业做数据挖掘的公司,不过正版一年也要上百万,不是土豪也用不起,而且SAS学习没人指导很难学;所以看童鞋们的选择,想在传统或者咨询公司做的SPSS比较合适,想去金融特别是银行业SAS不错,想进互联网公司学R语言可能是比较明智。
再就是Python。Python在这些工具里面是综合功能最强大的,但是这些功能分散在第三方库里面,没有得到有机的整合,所以学习成本还是比较高的。Python与R不同,Python是一门多功能的语言。数据统计是更多是通过第三方包来实现的。具体来说,常用的Python在统计上面的Package有这样一些:
1、Numpy与Scipy。这两个包是Python之所以能在数据分析占有一席之地的重要原因。其中Numpy封装了基础的矩阵和向量的操作,而Scipy则在Numpy的基础上提供了更丰富的功能,比如各种统计常用的分布和算法都能迅速的在Scipy中找到。
2、Matplotlib。这个Package主要是用来提供数据可视化的,其功能强大,生成的图标可以达到印刷品质,在各种学术会议里面出镜率不低。依托于Python,可定制性相对于其他的图形库更高。还有一个优点是提供互动化的数据分析,可以动态的缩放图表,用做Adhoc analysis非常合适。
3、Scikit Learn。非常好用的MachineLearning库,适合于用于快速定制原型。封装几乎所有的经典算法,易用性极高。
4、Python标准库。这里主要是体现了Python处理字符串的优势,由于Python多功能的属性和对于正则表达式的良好支持,用于处理文本是再合适不过的了。
Python是一套比较平衡的语言,各方面都可以,而R是在统计方面比较突出。R的优势在于有包罗万象的统计函数可以调用,特别是在时间序列分析方面(主要用在金融分析与趋势预测)无论是经典还是前沿的方法都有相应的包直接使用;相比Python在这方面贫乏不少。Python的优势在于其胶水语言的特性,一些底层用C写的算法封装在Python包里后性能非常高效。
总之R和SAS是专业性比较强的统计软件,统计专业学生必备,SPSS是更大众化的统计软件,Python不是统计软件,而是一种可以用来做各种事情的语言。R和Python现在越来越受到各大公司的喜欢,也必定会成为将来的发展趋势。Python的功能可远远不止用来分析数据,它可以用来开发,建站,写个小APP什么的。我们所知道的果壳网,知乎,DROPBOX等可都是用Python写得哦。如果你能同时学会Python和R,在数据科学领域肯定就游刃有余了。
总的来说,不同工具各有擅场,最关键的当然还在于业务的掌握和数学方法的掌握(统计学和机器学习等核心方法)。但磨刀不误砍柴工,把基本工具掌握熟练了百利无一弊。而当你要做大数据分析的时候,还会用到Hadoop等工具(实际上这些工具都是可以结合Hadoop大数据平台联合起来用的,后面专题介绍)。而且,工具不是万能的,业务和数据建模方法才是万法之源。不要被工具迷花了眼哦
数据分析咨询请扫描二维码
数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21