
三个常用数据分析模型的典型应用场景
为啥是这三个模型呢?因为这三个模型分别代表了数据分析的三种思路:分类,聚类,降维。
为啥没有回归?回归我打算专门写一篇,因此在本文中暂不涉及。
为啥只说应用场景?因为具体模型有很多专业书籍讲的更好,而且我个人认为,模型是固定的,场景是多变的,知道什么时候该用什么模型,比会用这个模型更重要一些。
那么,接下来正文开始。
一、决策树
定义:机器学习中,决策树是一个预测模型;它代表的是对象属性与对象值之间的一种映射关系。
个人认为决策树最出名的应用应该是这个:
你们头脑里隐藏的任何念头,
都躲不过魔帽的金睛火眼,
戴上它试一下吧,我会告诉你们,
你们应该分到哪一所学院。
你也许属于格兰芬多,
那里有埋藏在心底的勇敢,
他们的胆识、气魄和豪爽,
使格兰芬多出类拔萃;
你也许属于赫奇帕奇,
那里的人正直 忠诚,
赫奇帕奇的学子们坚忍诚实,
不畏惧艰辛的劳动;
如果你头脑精明,
或许会进智慧的老拉文克劳,
那些睿智博学的人,
总会在那里遇见他们的同道;
也许你会进斯莱特林,
也许你在这里交上真诚的朋友,
但那些狡诈 阴险之辈却会不惜一切手段,
去达到他们的目的。
分院帽应用的是个非常典型的决策树模型(什么鬼),在上文的《分院帽之歌(节选)》中,我标粗的每个部分都可以认为是一个特征,帽子往学生头上一扣,读取学生的显著特征,然后分到某个类别里。所以你看,哈利波特一开始表现出来的特征都是格兰芬多的特征,但他毕竟是个魂器,分院帽读取数据时候发现这个人有两类显著特征,于是犹豫不决,最后还是波特自己提出了要求,这就证明应用模型时的人工干预必不可少(大雾)。
言归正传,决策树在实际工作中基本应用于给人群分类,最好的应用场景是要把人群分为互斥的两类,并找到两类人群的不同特征。当然,分为多个互斥类别也OK。
一个非常典型的场景是流失模型,对电信业来说,通过用户的行为来提前找到哪些人有流失风险,并通过专门优惠等手段挽留,是运营中的重要部分。之前我在转入互联网行业时,第一选择本来是游戏公司(可惜愿意收的给不起合理工资……),因此研究了一下游戏用户流失模型的内容,发现跟电信业有相通之处。举个例子,对于某款端游,定义超过一周不登录用户为流失,那么做过的任务、拿到的装备、打过的副本、充值金额等等,都可以作为预测用特征,比对流失与非流失用户,找到两者的区别,在关键流失节点上加一些运营策略来减少流失。
二、k-means聚类
定义:k-means聚类的目的是:把n个点(可以是样本的一次观察或一个实例)划分到k个聚类中,使得每个点都属于离他最近的均值(此即聚类中心)对应的聚类,以之作为聚类的标准。
K-means聚类的好处在于样本量大的时候,可以快速分群,但需要在分群后注意每个群体的可解释性。换句话说,给你一万个人,分成四群,需要能够解释每一群人的突出特征,如果有两群人的特征很相似,那就要重新分群了;或者有一群人的特征不明显,那就要增加分群了。
聚类与分类不同,分类的目的是得到可复用的规则,使得训练集以外的个体可以直接分到已知的类别里;聚类属于后验的研究,是对已有个体的辨别。当然聚类可以在一定条件下转化为分类,例如K-means里知道了每类的中心,那么新个体可以依据和每类中心的距离,来判断所属类别。但通常情况下,聚类方法本身仍是用于研究的次数更多。
K-means常用的场景是在不清楚用户有几类时,尝试性的将用户进行分类,并根据每类用户的不同特征,决定下步动作。一个典型的应用场景是CRM管理中的数据库营销。举例,对于一个超市/电商网站/综合零售商,可以根据用户的购买行为,将其分为“年轻白领”、“一家三口”、“家有一老”、”初得子女“等等类型,然后通过邮件、短信、推送通知等,向其发起不同的优惠活动。
明尼苏达州一家塔吉特门店被客户投诉,一位中年男子指控塔吉特将婴儿产品优惠券寄给他的女儿——一个高中生。但没多久他却来电道歉,因为女儿经他逼问后坦承自己真的怀孕了。塔吉特百货就是靠着分析用户所有的购物数据,然后通过相关关系分析得出事情的真实状况。
这个案例也算是与”啤酒和尿布“知名度差不多的一个案例。在这个案例中,那个高中生少女明显是被聚到了孕妇那一类,因为她的行为模式与孕妇是很相近的。
(决策树也可以做这件事,但需要先定义出特征,因此在探索特征未知的领域时,聚类可能更好用一些)
顺便说一句,我原先在国企的时候干的就是这个事,而且发送渠道是最土的那种……平信……术语叫数据库商函……也叫直复营销(不是直销也不是传销!)。
三、因子分析
定义:因子分析是指研究从变量群中提取共性因子的统计技术。因子分析可在许多变量中找出隐藏的具有代表性的因子。将相同本质的变量归入一个因子,可减少变量的数目,还可检验变量间关系的假设。
之前说到因子分析是降维的一种方式,而降维归根结底就是一句话:变量太多的时候,需要将变量重构成带有更多信息的新变量,新变量与原始变量之间存在相关性,这样才能在不损失太多原始信息的情况下减少变量数量。
因子分析的一个典型应用场景是满意度调查。通过市场调研方式获取消费者满意度时,通常会有两位数的问题来了解消费者对哪些方面满意,哪些方面不满意,这个时候因子分析就很重要,可以将消费者的问题归结为相对较少的几个大问题方向,同时也可以看出哪些问题更为重要,需要优先解决。cda数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25