大数据为征信开辟一片蓝海
征信是一片蓝海,无论是传统金融机构,还是民间金融机构、草根金融机构,都需要征信数据为其风险控制保驾护航。从这个角度来看,这种需求是无限的。然而,征信的发展也是一场长跑,不论是生产数据、收集数据,都需要很长时间的积累。
2015年一开年,央行下发《关于做好个人征信业务准备工作的通知》,要求包括芝麻信用管理有限公司、腾讯征信有限公司、中诚信征信有限公司在内的8家征信企业做好个人征信业务的准备工作,令业界一片欢欣鼓舞。此后,对于个人征信的讨论持续高涨,从1月19日举行的2015年第二届互联网金融全球峰会上座无虚席的大数据征信专题会场可见一斑。
征信市场发展空间大
毫无疑问,中国的征信发展空间还很大。“我觉得中国征信业黄金发展期马上就要到了,也许下一个风口会是征信。”拉卡拉征信CEO徐彦之表达了对中国征信业未来发展的信心。腾讯征信总经理吴丹认为,在美国,征信体系的覆盖率达到了65%到70%,而目前我国央行征信体系的覆盖率在25%到30%,即覆盖3亿左右的人群。“如果按照美国的渗透率计算,中国的征信市场还有5亿人群的市场发展空间。”
个人征信市场的放开,无疑使征信体系向市场化方向迈进了一步,而以“大数据”为主要特点的个人征信企业,将在征信体系中发挥更加积极的作用。
“大数据的特点,第一是数据的指向性。即它提取的数据是有指向性的,是针对某一个群体的。第二是数据的威力性。威力性是指可以将数据信息转化为信息资源。”南京大学商学院副院长裴平认为,“大数据给我们带来的是金矿。”将消费者在互联网上的海量、多样的行为数据加以采集、组成、挖掘和应用,最终提炼出消费者信用信息,转化成可用的资源。
从另一个方面来看,互联网征信对国家倡导的普惠金融的发展有着积极的推动作用。吴丹表示,借助互联网征信能够帮助缺少因使用信用卡等金融工具而形成的信用报告的草根群体获得金融服务。
个人征信仍面临诸多挑战
尽管市场发展前景好,但不可否认的是摆在个人征信面前的还有诸多挑战。中智诚征信公司总裁李萱直言,数据的合规使用是当前个人征信面临的挑战之一。国内缺乏与征信相关的个人隐私法等法律,在法律真空下,是否能够使用这些数据,如何合法合规使用数据是征信公司面临的共同挑战。徐彦之对此也补充道,信息主体、信息授让人、信息使用者以及征信方,四方的责任、隐私界定等问题尚未明晰化,“在制度层面,我们希望把这些事情落实,能让征信机构更好地去发展,同时也需要我们一同去促进征信环境的健康发展。”
除了制度、法律上的挑战,数据的交换、整合、使用方面也受到规则不明的制约。北京华道征信常务副总童邗川认为,大数据无疑能够助力征信发展,但在现阶段,数据的收集、数据的整合规则尚未制定。“相关规则由国家层面出台制定,还是由机构自己发起形成未有定论。”他直言:“没有一定的规则,很难能够做到真正的征信。”
此外,在操作层面,徐彦之认为,行业不够统一、标准化的数据,影响了大数据的整合速度和进程。对此他倡议,各行业建立起统一的数据标准,共创行业共生环境。
未来之路任重而道远
相较英美等成熟征信体系,国内的征信体系仍处在起步发展阶段,虽然前景广阔,但要真正做起来,仍有很长的路要走。
安硕信息总裁高勇表示,征信是一片蓝海,无论是传统金融机构,还是民间金融机构、草根金融机构,都需要征信数据为其风险控制保驾护航。从这个角度来看,这种需求是无限的。然而,征信的发展也是一场长跑,不论是生产数据、收集数据,都需要很长时间的积累。因此,如果想要公司长久经营下去,要有一整套完善的数据生产、采集、分析机制才可以。
徐彦之用“任重道远”四个字来形容征信行业的未来发展之路。“到目前为止,国人对征信的理解,仅仅在于信贷征信的初级阶段,我们还有很多工作要做。”
征信与每个个体利益密切相关,征信公司肩负着不可忽视的社会责任。芝麻信用高级专家杨光表示,“真正进入这个行业之后,觉得其实大家的利益都是相关的,所以要更加稳妥地去创新。”在6个月的时间里,我们会做好包括投诉受理,安全保障等各方面的准备工作。徐彦之则表示:“对于8家企业来说,历史使命感和社会责任也许会远远大于商业价值,相信我们8家企业会从各个角度,不同维度去影响市场。”
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21