如何用Python高效地学习数据结构
今天的每日一答,我们来看看如何高效地学习一门语言的数据结构,今天我们先看Python篇。
所谓数据结构,是指相互之间存在一种或多种特定关系的数据类型的集合。
Python在数据分析领域中,最常用的数据结构,莫过于DataFrame了,今天我们就介绍如何高效地学习DataFrame这种数据结构。
要学习好一种东西,最好给自己找一个目标,达到了这个目标,我们就是学好了。一般,我在学习一门新的语言的数据结构的时候,一般要求自己达到以下五个要求:
第一个问题:概念,这种数据结构的概念是什么呢?
第二个问题:定义,如何定义这种数据结构呢?
第三个问题:限制,使用这种数据结构,有什么限制呢?
第四个问题:访问,访问这种数据结构内的数据的方式是什么呢?
第五个问题:修改,如何对这种数据结构进行增加元素、删除元素以及修改元素呢?
好,今天我们就来回答一下以上五个问题。
第一个问题:概念,这种数据结构的概念是什么呢?
数据框是用于存储多行和多列的数据集合,下面我们使用一张图片,形象地讲解它的内部结构:
OK,这个就是数据框的概念了。
第二个问题:定义,如何定义这种数据结构呢?
DataFrame函数语法
DataFrame(columnsMap)
代码举例:
>>>df=DataFrame({
'age':Series([21,22,23]),
'name':Series(['KEN','John','JIMI'])
});
>>>df
age name
0 21 KEN
1 22 John
2 23 JIMI
OK,这个就是定义数据框DataFrame的方法了。
第三个问题:限制,使用这种数据结构,有什么限制呢?
一般而言,限制是对于这种数据结构是否只能存储某种数据类型,在Python的数据框中,允许存放多种数据类型,基本上对于默认的数据类型,没有任何限制。
第四个问题:访问,访问这种数据结构内的数据的方式是什么呢?
访问位置 | 方法 | 备注 |
访问列 | 变量名[列名] | 访问对应列 |
访问行 | 变量名[n:m] | 访问n行到m-1行的数据 |
访问行和列 | 变量名.iloc[n1:n2,m1:m2] | 访问n1到n2-1列,m1到m2-1行的数据 |
访问位置 | 变量名.at[n, 列名] | 访问n行,列位置 |
代码举例
>>>df['age']
0 21
1 22
2 23
Name:age,dtype:int64
>>>df[1:2]
age name
1 22 John
>>>df.iloc[0:1,0:2]
agename
0 21 KEN
>>>df.at[0,'name']
'KEN'
>>>df[['age','name']]
agename
021KEN
122John
223JIMI
>>>
第五个问题:修改,如何对这种数据结构进行增加元素、删除元素以及修改元素呢?
这个问题,我并没有在课程中跟大家讨论过,主要是为了避免大家觉得学习起来很难。
也因此,这篇博文到了这里才是真正的干货,之前的那些都是课程中出现过的内容了,哈哈,
修改包括:
1、修改列名,行索引
2、增加/删除/修改行
3、增加/删除/修改列
好,下面我们上代码:
df=DataFrame({
'age':Series([21,22,23]),
'name':Series(['KEN','John','JIMI'])
});
#1.1、修改列名
>>>df.columns
Index(['age','name'],dtype='object')
>>>df.columns=['age2','name2']
>>>df
age2name2
021KEN
122John
223JIMI
#1.2、修改行名
>>>df.index
Int64Index([0,1,2],dtype='int64')
>>>df.index=range(1,4)
>>>df.index
Int64Index([1,2,3],dtype='int64')
#2.1、删除行
>>>df.drop(1)
age2name2
222John
323JIMI
>>>df
age2name2
121KEN
222John
323JIMI
#注意,删除后的DataFrame需要一个变量来接收,并不会直接修改原来的DataFrame.
>>>newdf=df.drop(1);
>>>newdf
age2name2
222John
323JIMI
#2.2、删除列
>>>delnewdf['age2']
>>>newdf
name2
2John
3JIMI
#3.1、增加行
>>>df.loc[len(df)+1]=[24,"KENKEN"];
>>>df
age2name2
121KEN
222John
323JIMI
424KENKEN
#3.2、增加列
>>>df['newColumn']=[2,4,6,8];
>>>df
age2name2newColumn
121KEN2
222John4
323JIMI6
424KENKEN8
以上就是全部五个问题的答案了,通过自问自答这五个问题,我们就可以高效地学习某种数据结构了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10