如何用Python高效地学习数据结构
今天的每日一答,我们来看看如何高效地学习一门语言的数据结构,今天我们先看Python篇。
所谓数据结构,是指相互之间存在一种或多种特定关系的数据类型的集合。
Python在数据分析领域中,最常用的数据结构,莫过于DataFrame了,今天我们就介绍如何高效地学习DataFrame这种数据结构。
要学习好一种东西,最好给自己找一个目标,达到了这个目标,我们就是学好了。一般,我在学习一门新的语言的数据结构的时候,一般要求自己达到以下五个要求:
第一个问题:概念,这种数据结构的概念是什么呢?
第二个问题:定义,如何定义这种数据结构呢?
第三个问题:限制,使用这种数据结构,有什么限制呢?
第四个问题:访问,访问这种数据结构内的数据的方式是什么呢?
第五个问题:修改,如何对这种数据结构进行增加元素、删除元素以及修改元素呢?
好,今天我们就来回答一下以上五个问题。
第一个问题:概念,这种数据结构的概念是什么呢?
数据框是用于存储多行和多列的数据集合,下面我们使用一张图片,形象地讲解它的内部结构:
OK,这个就是数据框的概念了。
第二个问题:定义,如何定义这种数据结构呢?
DataFrame函数语法
DataFrame(columnsMap)
代码举例:
>>>df=DataFrame({
'age':Series([21,22,23]),
'name':Series(['KEN','John','JIMI'])
});
>>>df
age name
0 21 KEN
1 22 John
2 23 JIMI
OK,这个就是定义数据框DataFrame的方法了。
第三个问题:限制,使用这种数据结构,有什么限制呢?
一般而言,限制是对于这种数据结构是否只能存储某种数据类型,在Python的数据框中,允许存放多种数据类型,基本上对于默认的数据类型,没有任何限制。
第四个问题:访问,访问这种数据结构内的数据的方式是什么呢?
访问位置 | 方法 | 备注 |
访问列 | 变量名[列名] | 访问对应列 |
访问行 | 变量名[n:m] | 访问n行到m-1行的数据 |
访问行和列 | 变量名.iloc[n1:n2,m1:m2] | 访问n1到n2-1列,m1到m2-1行的数据 |
访问位置 | 变量名.at[n, 列名] | 访问n行,列位置 |
代码举例
>>>df['age']
0 21
1 22
2 23
Name:age,dtype:int64
>>>df[1:2]
age name
1 22 John
>>>df.iloc[0:1,0:2]
agename
0 21 KEN
>>>df.at[0,'name']
'KEN'
>>>df[['age','name']]
agename
021KEN
122John
223JIMI
>>>
第五个问题:修改,如何对这种数据结构进行增加元素、删除元素以及修改元素呢?
这个问题,我并没有在课程中跟大家讨论过,主要是为了避免大家觉得学习起来很难。
也因此,这篇博文到了这里才是真正的干货,之前的那些都是课程中出现过的内容了,哈哈,
修改包括:
1、修改列名,行索引
2、增加/删除/修改行
3、增加/删除/修改列
好,下面我们上代码:
df=DataFrame({
'age':Series([21,22,23]),
'name':Series(['KEN','John','JIMI'])
});
#1.1、修改列名
>>>df.columns
Index(['age','name'],dtype='object')
>>>df.columns=['age2','name2']
>>>df
age2name2
021KEN
122John
223JIMI
#1.2、修改行名
>>>df.index
Int64Index([0,1,2],dtype='int64')
>>>df.index=range(1,4)
>>>df.index
Int64Index([1,2,3],dtype='int64')
#2.1、删除行
>>>df.drop(1)
age2name2
222John
323JIMI
>>>df
age2name2
121KEN
222John
323JIMI
#注意,删除后的DataFrame需要一个变量来接收,并不会直接修改原来的DataFrame.
>>>newdf=df.drop(1);
>>>newdf
age2name2
222John
323JIMI
#2.2、删除列
>>>delnewdf['age2']
>>>newdf
name2
2John
3JIMI
#3.1、增加行
>>>df.loc[len(df)+1]=[24,"KENKEN"];
>>>df
age2name2
121KEN
222John
323JIMI
424KENKEN
#3.2、增加列
>>>df['newColumn']=[2,4,6,8];
>>>df
age2name2newColumn
121KEN2
222John4
323JIMI6
424KENKEN8
以上就是全部五个问题的答案了,通过自问自答这五个问题,我们就可以高效地学习某种数据结构了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-30