得大数据者得新工业革命先机
数据无限多时,就接近真实世界的本原。人类征服世界的前提是认识世界,既然借助大数据已经无限接近了真实世界,也就不必画蛇添足了,还是保持真实数据原貌最好,而且,认识世界的能力越强,人类征服世界和改造世界的能力也越强。
世界经济论坛第十届新领军者年会即夏季达沃斯论坛即将在天津举行,主题为“第四次工业革命——转型的力量”。届时,全球90多个国家和地区的超过1500位各界领军人物将集中探讨第四次工业革命对未来经济、社会、生态和文化的重要影响。今年1月下旬在瑞士小镇举行的达沃斯年会,主题也是“掌控第四次工业革命”,主要讨论第四次工业革命将如何改变人类生产、分配和消费模式,如何应对由此带来的挑战。世界顶级企业家与智库一年内两度探讨同一主题,在达沃斯论坛历史上还是首次。世界精英如此心仪新工业革命,盖因世界经济遇到了瓶颈,人们急切期望从新工业革命中找到突破口,找到人类可持续发展的钥匙。而要理解新工业革命,先得弄清大数据革命。
一般认为,大数据的数量级是在“太字节”即2的40次方以上,一般软件人员难以收集、存储、管理和分析的数据,而且这种认定还是相对的,随着科技进步,“大”的认定还会不断变化。但仅仅因为“大”而称之为大数据,风靡全球的大数据革命就没有太大意义了。在小数据时代,我们只能有选择性采集抽样数据、局部数据和片面数据,有时甚至在无法获得实证时纯粹靠经验、理论、假设和价值观去发现未知领域的规律。结果只能是对真实世界的抽象归纳与推理,这就不可避免包含了人的心理和主观因素。同时,由于样本的局部性,时间非全天候性,归纳推理中的主客观偏差,有时可能出现“蝴蝶效应”,差之毫厘,谬以千里。
大数据的真正意义在于:通过传感器,实现真实世界的全方位连接,得到全方位实时数据,交换、整合和云计算,逼近真实世界。
小数据追求“小”、“精”、“优”;大数据追求的是“多”、“杂”、“更优”。小数据时代,受科技水平的限制,只能依据随机样本,大数据则要求所有数据,在小数据时代只有5%的数据符合样本结构化要求,剩下的95%数据都被排斥在外了。大数据则良莠不拒,不求随机样本,而是全体数据;不求精确性,而是混杂性。小数据探求因果关系,即知道“为什么”,以便归纳推理和预测;而大数据只知道相关关系,不必知道因果关系,只要知道“是什么”不必知道“为什么”。小数据追求精确、完美,往往导致不精确、不完美;大数据不求精确、不求完美,反而导致了观测客观世界的更精确、更完美。如2009年谷歌通过大数据分析准确地得出什么地方发现了H1N1禽流感,而且判断非常及时,比美国疾控中心的判断结论要早一两周。美国安大略理工学院卡罗琳·麦格雷戈博士利用软件预测早产儿的病情,不仅比专业医生及时,而且一些病状,医生不能发现,而计算机能发现。这些人都没有医疗方面的专业背景。这样的例子在大数据时代还有很多。正如“大数据时代的预言家”,牛津大学教授维多克·迈尔-舍恩伯格所言:“在不久的将来,世界许多依靠人类判断力的领域都会被计算机系统所改变甚至取代。”这看似是一个矛盾的命题,其实是一个方法论上的革命,即“大数据革命”。
明代著名思想家洪应明说过:“文章极处无奇巧,人品极处只本然。”一个人写文章写到登峰造极的境界时,其实并没有什么写作艺术可言,只是把内心的真实感受真实地表现出来,让读者从内心产生共鸣。一个人的品德修养达到炉火纯青的境界时,就能“随心所欲不逾矩”,让人回归到纯真朴实的本然之性而已。大数据革命与此异曲同工:“工业革命无奇巧,数据大时只本然”。数据无限多时,就接近真实世界的本原。人类征服世界的前提是认识世界,既然借助大数据已经无限接近了真实世界,也就不必画蛇添足了,还是保持真实数据原貌最好,而且,认识世界的能力越强,人类征服世界和改造世界的能力也越强。
大数据“多”、“快”“好”“省”的优点奠定了新工业革命的基石。“数据多”,随着科技水平的进一步发展,大数据将无限逼近真实世界。“速度快”,全天候随时实现信息交换,没有时滞。“效果好”,大数据增加了人类的“观测”能力。美国麻省理工学院布伦乔尔森将大数据称之为人类社会行为观测的“显微镜”,就像望远镜让我们能洞察遥远的星河,显微镜让我们观察微小的细胞一样,大数据将帮助我们完成在通常的眼光下无法完成的工作。
新工业革命,本质上是智能革命,而智能革命的基础是信息化,大数据是根本。没有大数据对客观事物全面、快速、真实、准确的信息反馈,任何智能设备都不可能实现真正的智能。因此,西方学者将即将来临的新工业革命也称之“后信息时代的革命”,归根到底,这是“大数据的革命”。以至于知名信息专家涂子沛说:“数据可以治国,也可以强国”,“得数据者得天下”。借用涂子沛的这句话,我们还可以说:“数据可以治业,数据可以兴业,得大数据者将占据新工业革命之先机!”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31