统计学中的基本概念
1、描述统计与推断统计
描述统计(Descriptive Statistics):用表格、图形和数字来概括、显示数据特征的统计方法。
例1:2005年我国出生人口性别比(男:女)已经升高到119.92,与正常值106相比有严重的偏离。
例2:中国经济增长的起伏
推断统计(Inferentia Statistics):从总体中抽取样本,并利用样本数据来推断总体特征的统计方法。
总体(popuation):由统计研究所涉及的那些同质个体(也称单位)所形成的集合。
样本(sampe):所研究总体的一部分。
例1: 2003年人口变动抽样调查以全国为总体,在全国抽取了990个县(市、区)、3734个乡(镇、街道)、6544个调查小区的126万人。根据调查结果推算,2003年末全国总人口为129227万人,出生人口为1599万人,死亡人口为825万人,净增人口为774万人。
例2:一家大公司的会计部门会从所有的发票中选择一部分来检查公司所有发票的准确性。
2、数据和变量类型
(1)、定类尺度 (Nomina Scae)
也称列名尺度、名义尺度、分类尺度
例如:性别、民族、职业
数据表现为“类别”
各类之间无等级次序
各类别可以用数字代码表示
根据定类尺度得到的数据为分类数据。
(2)、定序尺度(Ordina Scae)
也称顺序尺度
例如健康状况、质量等级
数据表现为“类别”
可对等级、大小等排序
未测量出类别之间的准确差值
根据定序尺度得到的数据为顺序数据。
(3)、定距尺度 Interva Scae
也称间隔尺度
例如年份、摄氏温度
数据表现为“数值”
可以进行加减运算
“0”是只是尺度上的一个点,不代表“不存在”
根据定距尺度得到的数据为间距数据。
(4)、定比尺度 Ratio Scae
也称比率尺度
例如体重、身高
数据表现为“数值”
可以进行加减、乘除运算
“0”表示“没有”或“不存在”
根据定比尺度得到的数据为比率数据。
定距尺度与定比尺度的区别
定距尺度中“0”表示一个具体数值,不表示“没有”或“不存在”,定比尺度中“0”表示“没有”或“不存在” 。
在实际应用中定距尺度与定比尺度差别微不足道,往往不作区分。 例如在SPSS Statistics软件中,数据的计量尺度被分为3类:名义(Nomina)、有序(Ordina)、 度量(Scae )
四种计量尺度的比较
1、四种尺度所包含的信息量是依次递增的,级别由低到高。
2、根据较高层次的计量尺度可以获得较低层次的计量尺度。
3、不同的尺度数据对应这不同数据显示方法和分析方法。
数据和变量类型:总结
变量的概念和类型
变量是用来描述现象某种令人感兴趣的特征的概念。
品质变量是描述个体有关属性特征的变量,本质上不能用数字来表示。例如性别。
数量变量是描述个体有关数量特征的变量,都是用数字来表示的。例如人数,年龄等。
离散型变量指的是有限个数值或诸如0,1,2……之类无限可列值的变量。
如果某一变量可以取某一区间或多个区间中任意数值,则该变量称为连续型变量。
横截面、时间序列和面板数据
横截面数据(Cross-sectiona data)是在同一时点或是大约在同一时点所收集的数据。
例如2016年我国各直辖市的GDP 。
时间序列数据(Time series data)是按时间顺序取得的一系列数据。
例如我国历年的GDP。
面板数据(Pane Data):对多个事物在不同时期或时点上进行测量得到的数据 。如1996-2016年全国各个省份的GDP
3、统计指标的概念
一般有两种理解和两种使用方法:
1、统计指标是指反映现象数量特征的概念。如年末人口数、商品销售额、劳动生产率等。
2、统计指标是反映现象数量特征的概念和具体数值。如我国2016年的国内生产总值 。
(1)总量指标
也称为绝对数:以绝对数形式表现现象规模和水平的统计指标。可以分为时点数和时期数。
例如,2007全年入境旅游人数13187万人次 ;2007年全年国内生产总值246619亿元 ;2007年末全国参加城镇基本养老保险人数为20107万人 .
(2)时点数和时期数
时点数:是描述某种现象在某一个特定时刻(某一瞬间或某一时点)数量表现的数据。
例如,2007年年末全国总人口为132129万人 。
时期数:是描述某种现象在某一个特定时间范围内所实现的成果的数据。例如,2004年我国全年各种运输方式完成货物运输周转量66698亿吨公里。
区分数据是时点数还是时期数的方法之一看其加总后的结果是否有意义。若有意义则该指标必定是时期数。反之,则必定是时点数。
(3)相对数和平均数
相对指标:采用两个有联系的数值进行对比而得到的比值。也称为相对数,如产业结构比例、性别比、人口密度等等。
平均指标:也称为平均数,反映现象在某一时间或空间上的平均数量水平。例如职工的平均工资,平均考试成绩,等等。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31