传统企业如何转型 一切业务数据化
近几年来,由于互联网企业的兴起,中国的企业界如同一池春水,水面被吹皱、甚至搅乱了,传统企业纷纷提出要向互联网转型,即企业要利用互联网的平台来开展业务活动。今年1月份,中国的企业界甚至成立了“中国企业互联网化推进联盟”,来推动传统企业向互联网化转型。
但传统企业究竟如何才能实现互联网化?一个企业的线上业务和线下业务又怎样才能融汇贯通?尽管业界已经探讨了一两年的时间,面对这些问题,很多企业的领导人还是一筹莫展,感觉象天狗吃月亮、无处下手。
我认为,这个切入点,现在正在变得越来越清晰,它就是“数据”,信息技术发展到今天,互联网化的本质和核心,其实就是“数据化”。
不妨以互联网的典型企业——电商为例。
和传统的线下实体店相比,电商的经营模式究竟有什么不同呢?先撇开互联网,我们会发现,电商跟实体商店最本质的区别,是电商每卖出一件产品,都会留存一条详尽的数据记录。也正是因为可以用电子化的形式保留每一笔销售的明细,电商可以清楚的掌握每一件商品到底卖给了谁,此外,依托互联网这个平台,电商还可以记录每一个消费者的鼠标点击记录、网上搜索记录,所有这些记录形成了一个关于消费者行为的实时数据闭环,通过这个闭环中源源不断产生的新鲜数据,电商可以更好的洞察消费者,更及时的预测其需求的变化,经营者和消费者之间因产生了很强的黏性。
线下实体商店却没有办法做到这一点,你要问任何一家实体店的老板:你的货都卖到哪去了?他可能只知道一个省、一个市或者一个地区卖了多少,却无法回答他所生产、经营的每一件商品究竟卖到了哪一个具体的地方、哪一个具体的人、这个人还买了其它什么东西、察看了哪些产品、可能喜欢什么?换句话说,线下店即使收集了一些数据,但其数据的粒度、宽度、广度、深度都非常有限,由于缺乏数据,实体店对自己的经营行为、对消费者的洞察以及和消费者之间的黏性都十分有限。
就此而言,一家电商和一家线下实体店最本质的区别,是是否保存了足够的数据。其实,这正是互联网化的核心和本质,即“数据化”。当然,这不是一个简单的数据化,而是所有业务的过程都要数据化,即把所有的业务过程记录下来、形成一个数据的闭环,这个闭环的实时性和效率是关键的指标。这个思想,也可以简单的概括为:一切业务数据化。
可以设想,如果今天有一家实体店可以把自己所有的生产行为、经营行为和管理行为全部都数据化的话,理论上,它就可以和电商比翼齐肩了,互联网只是一个工具,其目的是数据化,通过数据化,让一切业务都变得可以分析,从而更好的掌握市场和用户。
阿里巴巴公司是全世界电子商务的领头羊,拥有比美国两家电子商务翘楚“亚马逊”和“Ebay”加起来还大的数据,但这样一个大数据公司,今天仍然在强调“一切业务数据化”,即认为自己的“数据化”工作还没有做深、做透,还要用更多的数据记录更多的商业过程。
其实不止传统企业的转型,扑面而来的整个信息经济,无论是互联网金融、在线教育(MOOC)、还是智慧城市,其核心都是数据化,人类将通过越来越普及的电子记录手段建构一个和物理世界相对应的数据世界。这个数据世界在时间、空间二个维度上不断衍生、扩大,形成一个和真实世界对应的镜象和映射,因为这个数据世界可以随时被重构、被分析,人类因此可以更好的了解过去、把握未来。
换一个角度,我们甚至还可以断言,随着数据化的不断深入和扩大,整个人类的历史都将以数据的形式而存在,数据就是静态的历史,历史就是动态的数据。因为人类记录历史的手段,无非就是数字、文档、图片、音频、视频等等,所有这些形式,都是数据。数据越丰富,就可以更好地再现昨日的社会、分析当时的情境。就此而言,历史的碎片,就是游离的数据;历史的迷雾,就是模糊的数据;历史的盲点,就是缺失的数据。当历史和现实都可以用数据重建、分析和解构的时候,我们就象有了一个水晶球,可以更好的在迷雾中看清问题、发现盲点、把握未来。企业如此,社会治理亦如是。
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13