大数据爆炸下的冷思考 企业该如何抉择
随着组织决策越来越多地采用数据驱动,高层管理人员需要保证决策权是数据驱动的。这就解释了为什么如此多的组织已经采用数据治理的战略。
大数据爆炸下的冷思考企业该如何抉择?
如今,越来越多的企业难以解决经营原则的两个矛盾。一方面,他们迫切寻求更大的灵活性;另一方面,他们希望用其流程规范企业利益相关者。这种冲突和不安导致对城传统的“集权/分权”的辩论。企业和客户需要更大的灵活性,而员工和合作伙伴期望更大的权力。因此,企业希望二者兼顾,并达到平衡。
这其中包括更多的人,但通常会增加协调成本和响应时间。而这几乎矛盾的是,更大的企业的灵活性需要更大的反应能力和提高协调能力。涉及的利益相关者越多,决定延迟的可能性越大。但有效的灵活性往往需要具有包容性的利益相关者的参与。
换句话说,更多的人希望更频繁地作出更灵活的决策,这种情况会让客户疯狂。例如在一家财富1000强公司,该公司的几个客户支持小组之间爆发了“口水战”,技术设计组急于回应用客户的投诉,同样迫切地避免临时性修复。却没有一个小组可以有效解决问题,而他们的职能重叠迅速成为冲突来源而不是努力合作。这种情况并不少见。
那些数字网络化企业,例如Slacked,Chattered,Skyped,Google公司等加剧了紧张局势和痛点:更多的利益相关者可以即时访问和共享可操作的信息。其技术有助于提高整个企业生态系统的透明度和知名度,大大提高实时态势感知能力。但是,管理和运作能力可能不会对这些数据驱动的信息采取行动。
到目前为止,处理这些紧张局势最好的和最有效的途径是25年前迈克尔•詹森在决策权的开创性工作。简单地说,决策权要明确决策的权力和责任。决策权是关于如何组织“决定如何判断”谁有权作出决定,并把它看成是对企业决策的治理模式。
詹森的微妙和精彩观点是,做出决定的权利,不仅仅是执行或负责任务的能力,而且对提高组织效率和有效性至关重要。因此,分配决策权是每一个组织重要的工作角色和任务的定义。有鉴于此,决策权可以应该被视为权力的管理机制。你或你的团队的决定权越大,则会赋予更多的权力和责任。
该RACI框架为詹森的决策权办法提供了一个很好的真实世界的实例:
负责:谁在完成任务?
问责:是谁在做决定,并对任务采取行动?
咨询:谁将做有关决定和任务传达?
知情:谁将在在项目/流程中的决策和行动进行更新?
这些问题是简单的,相对容易映射。也就是说,在一个RACI审查中发现有关个人和团队连接数字应该是简单的。越来越多的企业采用RACI(或某些变体)来创建审计问责的网络项目和过程管理。
这些网络同时成为具有包容性和灵活性的平台。想要咨询或通知的个人和团队可以选择网络;反之,当问责或负责经理需要更敏捷地响应客户的需求时,他们可以利用工作网络提供“及时”的回应。映射这些网络为利益相关者和高层管理人员创造了可视性和清晰性。为他们进入企业的决策层次结构提供了必要的窗口和镜头。
然而具有讽刺意味的是,增长最快的应用决策权上强调数字化、数据和分析。而有权访问、处理和共享数据已成为企业中最伟大的机会和争夺的来源。这种结构的转变远远超出了詹森25年前最初的设想和描述,因为大数据的兴起及其相关的分析,改变了围绕决策权的争论。
围绕数据的决策权越来越多地需要决策权的数据。换句话说,如果你的组织已经准备好进入过程,并分享10倍到100倍以上的数据,那么你的现有决策机制的权利是完全过时了。任何机智的品牌经理策划当天的营销活动,而没有纳入社会媒体分析的能力?但品牌管理者需要数据科学家和分析工具的计算能力,并从该数据获得更大的价值。因此决策权是必要的,以确定和界定品牌管理和数据管理的协作方式。
大数据爆炸完全重新定义了决策权和RACI讨论。一些公司历来注重新产品的设计和开发工作,但随着移动应用的兴起,该公司的创新重点转移远离建设更好的产品,而是促进更好的用户体验。UX需要不同的产品数据和分析问责;用户体验的重点是不同的团队和个人需要咨询和告知。从本质上讲,用户体验驱动的数据和分析平衡了灵活性和包容性之间的决策权的关系。
企业的人员和流程围绕UX决策权的技术实施,其结果证明了效果惊人。该公司通过各种形式的社交媒体和使用情况的监测获得10倍以上可用的反馈信息,并在三个月内开发出更好的版本,而不是以往的一年时间,并加大了产品开发力度,目前开发成本是原来产品开发成本的一半。
随着组织决策越来越多地采用数据驱动,高层管理人员需要保证决策权是数据驱动的。这就解释了为什么如此多的组织已经采用数据治理的战略。而相反,更多的传统IT治理,旨在为IT系统管理创造更大的问责性,在数据治理过程中人们认识到,数据是任务资产管理的关键。
如何数据得到共享(包容)?组织如何有效地利用这些数据(灵活性)?这些数据治理问题的答案将在数据驱动的决策权的创新应用中发现。数据治理的未来影响决策权的未来,而决策权的未来决定数据治理的未来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31