京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言之纵向数据分析:多级增长模
上一次,我们讨论了如何对长型数据转换成长型的数据,同时还是用了一个随机创建的对照实验数据集来对其增长趋势进行可视化。但是,我们是否能够进一步的分析并预测结果的增长趋势与时间之间的关系。
是的,当然可以!我们可以使用多级增长模型(也称之为层次模型或者混合模型)进行估计。
产生一个水平数据集并把它转成宽格式
下面,我们先从我之前的一篇文章的实例进行讲解:
这里有很多R语言包可以帮助你进行多级分析,其中,我发现lme4包是最好的一个,因为它使用比较简单,而且建模能力也很强(尤其是输出二进制结果或者计数结果)。当然,nlme包也是相当不错的,它可以给连续型结果提供了类似的结果(正态/高斯分布)。
如果你之前做过回归分析,你应该对这样的语法结构比较熟悉了。通常来说,它就是lm()函数当中含有额外的随即效应公式。
随即效应,如果你对这个术语不熟悉的话,其实可以这么理解,通常来说,它就是一个实验所无法控制的误差,即变化。因此,比方来说,一个志愿者所收到的治疗效果就是一种混合的效应,因为,假设我们是实验人员,我们会决定哪些人接受A治疗方案,哪些接受B治疗方案。然而,抑郁症评分的基线在治疗的初始阶段会因人而异,一些人可能会更加抑郁,一些其实并没有这么忧郁。由于这是无法控制的,我们会把它看成是随即效应。
尤其是,抑郁评分基线的差异可以看作是一个随机区间(即,不同的志愿者参与不同等级的治疗)。我们也可以在建模的时候,对它们的斜率进行随机设置:例如,如果我们有理由相信尽管大家接受的治疗是一样的,一些参与治疗的人可以收到很好的疗效,而其它人则收效甚微。
结果的随机效应部分陈述了数据的方差结构。在这个模型中,存在两种方差结构:残差(通常用在线性模型)和个体之间的差异(即,每一个主体的id)。量化个体差异程度的一种常用方法就是研究同类相关系数(ICC)。我们可能可以从多级模型那里计算ICC,而且
,这意味着,24.3%的抑郁平分变化可以由个体差异程度来解释。
现在,我们把目光转到修正效应。嗯…,那些p值在哪里呢?这,尽管SAS和其它统计软件有给多级模型的修正效应计算提供p值方面的信息,其实,很多统计学家的计算结果并不一致。举个简单的例子,我们对自由度与这些t检验的关联程度了解的不深,而且没有自由度的话,我们比不知道t检验的具体分布,因此,我们无法得到p值方面的信息。SAS和其它软件都有相应的工作区来处理估计值,这时lme4包开发人员感到不舒服的地方。结果,lmer包并没有刻意的汇报p值的信息(所以,不要害怕你得不到p值!或许有其它的方法在显著性的测量上比我们的模型做的还好)。
这么说,如果你绝对需要p值,我们可以使用基于lme4包所产生的lmerTest包来估算p值。
下面大部分的代码和上面的类似,除非我们要使用lmerTest包。
其结果很相似,但现在,我们可以得到自由度和p的估计值。所以,我们可以很自信的说普通RCT参与治疗的人,现在,随着时间的推移,他们的抑郁症得分在下降,其速度为每下降1分,下降的量为2.24。
有时,我们想在单个轨迹的均值进行作图。如果要展示均值里的一些不确定因素,我们需要使用拟合好的模型,利用拟合值进行计算,算出95%置信区间和95%预测区间。
第一行代码指出我们想要求出均值的一个点,它们一般来说是在我们这个案例的前三次预测的时候。第二行代码使用了predict()函数来得到模型的均值,它不考虑条件随机效应(re.form=NA)。第三第四行计算了均值的方差,一般来说是矩阵交叉与随机效应截距相加。第五行计算了单个观测值的方差,它的方差等于方差均值假设残差方差。第六到第九行则按普通方法,并假设它是正态分布来计算95%置信区间和预测区间。最后所给的代码是:
最后,我们要作它的95%置信区间和95%预测区间的图像了。注意,预测区间的图像要宽于置信区间。也就是说,预测均值的结果比用单个值预测要好。
如果你和我一样,对数据也很敏感,你应该能观察到图线的拟合效果并不太好。这里,有两种办法可以得到更好的结果,而这个我们在后面将会讲到。保持关注。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12