R语言之纵向数据分析:多级线性增长模型2
这篇文章已经是纵向数据分析系列的第三篇了。之前,我们介绍了什么是纵向数据,我们如何把长型的数据集转换成纵向的数据集,并通过建立相应的多级模型进行分析。显然,仅仅介绍基本的多级模型并不足以对虚拟随机对照实验数据集进行分析。这篇文章则延续之前的分析,并介绍一种不错的方法来处理多级模型里的治疗效果问题。
和往常一样,我们还是先创建一个纵向数据集,然后把它转成长型的格式。
这是一个RCT数据集,也就说明,这里潜在存两个以疗效分组的差异。上一次,我们没有考虑异质性,而仅仅对两个组的普通疗效进行了细分。从直觉上看,我们可以添加治疗变量来修复这个模型,从而抓到组间的差异。
这里,我们任然使用lmerTest包是因为它允许修正模型的检验使用自由度。模型的公式和是和上次的一样,除非我们把治疗变量tx作为独立变量。
从上述的summary里的信息可以很明显的看到,time和tx这两个变量都相当显著,而接受B治疗的人群在抑郁症得分上比接受A治疗的人群低2.34分。那么,我们是否可以认为,B治疗方案效果更好?绝对不是。模型m1实际上并不合适对纵向数据集里的组间差异进行比较。m1里的治疗效果,其实也就是一段时间内的平均治疗效果。换句话说,治疗方案A和治疗方案B的疗效所导致的分差在-2.34分,其实只不过是1,2,3时间段内抑郁症均分的差。这是RCT,所以,我们所期待的志愿者参与两组治疗方案里时间段1的差要小于1。我们对两组疗效的均值差异感兴趣,而现在的轨迹在时间段2、3里存在差异。
这个概率可能对初学者来说有点复杂,但是其执行过程很简单,我们只需要添加交互变量time和tx。
在R,我们可以使用:符号来表明变量间的交互关系。因此,我们可以这样设置:time+tx+time:tx。但是,更简短的写法是:timetx。操作符要R涵盖主要变量和治疗疗效。此时,使用操作符就能简单实现各个效应的展示。请记住,操作符也可用于高维变量交互。比如,ABC就要R包含三个主要的效应,三个两两交互的效应,以及一个三元交互效应。
现在,我们从m2模型中获得一个三元交互关系。在这个模型当中,time效应指的就是疗效A(这是特定条件下的疗效和疗效时间的交互),而txB效应就是时间点为0时的效应(数据集里一个虚的时间点)。这个术语解释起来有点复杂:系数值反映了每个时间段内两种治疗方案的疗效上的差异,其条件是取平均时间和治疗效果。口头上说,人们可以理解的是,这表明两组治疗方案是如何随着时间的推移而不同。对于每个单位时间内的增长(即,从时间段1到时间段2),在完成平均治疗效应差的分析以后,接受B治疗方案的参与者理论上在抑郁症得分方面比接受A治疗方案的要低2.88分。所以,在时间段2内,接受B治疗方案的参与者得分差是 -2.88 x 2 + 3.43 = -2.33,而在时间段3内,接受B治疗方案的参与者得分差是-2.88 x 3+ 3.43 = -5.21。我们应当时刻注意,在一个给定的时间段里对比疗效差的时候,主要疗效以及疗效变量间的交互。但是,为什么要这样?你不妨设置分析一下,当你忽略了主要治疗效应的时候,你在时间段1内所得到的疗效差是怎样的情形。
我可以告诉你,模型m2比m1和m0(上一篇文章所采用的模型)都要好,原因在于,这个数据集是我们自己创建的。但在实际生活中,我们会在选择最好的一个模型的时候会遇到很多困难。其中一种选择的方式就是,按照我们之前所讲的,使用summary()函数,以此算出额外变量的统计显著性。其它一个常用的方法就是使用方差分析(ANOVA)表(仅仅针对嵌套模型),而这种方法适合用于这个模型。
这里,我们使用anova()对m0、m1和m2模型进行方差分析,原因在于我们把m0嵌套于m1,然后把m1嵌套于m2。如果还有另外的子集,我们就把模型嵌套到那个子集上。换句话说,含有独立变量A、B的模型则嵌套于含有变量A、B、C的模型中。
如果你做过方差分析,那这个方差分析表对于你来说应该是很熟悉了。Df列表明了模型里的自由度,它简单的反映了这个案例的参数估计。例如,自由度为4的模型m0表明了这个模型预测了4个参数(1.修正截距效应系数,2.时间效应,3.随机截距方差,4.残差)。
AIC和BIC是两个常用的拟合指数。AIC和BIC都考虑到两个因素:模型的数据拟合效果有多好,和这个模型复不复杂。AIC和BIC的不同之处在于模型复杂度的罚分上(BIC对模型复杂度的罚分影响更大)。我发现,AIC理解起来更容易,因为它渐进的使用留一交叉检验法(LOOCV)来预测运行效果。我们应当理解交叉检验和预测性能的概念,随后,如果你对此不太理解,你可以先把它跳过。
LogLik列模型参数的似然对数。从根本上说,它是模型里数据拟合效果的指标。其偏差是−2×logLik−2×logLik。为什么我们需要它?因为两个嵌套模型的偏差在原假设的条件下遵循卡方检验(假设两个嵌套模型的偏差一样)。此时,我们可以把它用作模型拟合差的测试。偏差的差则在Chisq列显示。卡方检验的统计相关自由度则在Chi Df(简单来说,就是额外参数的个数)。最后一行的结果显而易见:它算出了测试两个嵌套模型的差的p值。虽然是这样,我们还是要警惕ANOVA的结果,因为在众多的候选模型中,它会导致错误类型1上升极快。
由于模型m2比其它两个候选模型AIC和BIC都要好,而对于方差分析,我们可以认为这个模型是目前为止我们拟合的最好的了。当然,这个模型还有许多要改进的地方。后续,我们可能还可以在模型的性能上进行提升,并作图进行预测。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31