R语言之纵向数据分析:多级线性增长模型2
这篇文章已经是纵向数据分析系列的第三篇了。之前,我们介绍了什么是纵向数据,我们如何把长型的数据集转换成纵向的数据集,并通过建立相应的多级模型进行分析。显然,仅仅介绍基本的多级模型并不足以对虚拟随机对照实验数据集进行分析。这篇文章则延续之前的分析,并介绍一种不错的方法来处理多级模型里的治疗效果问题。
和往常一样,我们还是先创建一个纵向数据集,然后把它转成长型的格式。
这是一个RCT数据集,也就说明,这里潜在存两个以疗效分组的差异。上一次,我们没有考虑异质性,而仅仅对两个组的普通疗效进行了细分。从直觉上看,我们可以添加治疗变量来修复这个模型,从而抓到组间的差异。
这里,我们任然使用lmerTest包是因为它允许修正模型的检验使用自由度。模型的公式和是和上次的一样,除非我们把治疗变量tx作为独立变量。
从上述的summary里的信息可以很明显的看到,time和tx这两个变量都相当显著,而接受B治疗的人群在抑郁症得分上比接受A治疗的人群低2.34分。那么,我们是否可以认为,B治疗方案效果更好?绝对不是。模型m1实际上并不合适对纵向数据集里的组间差异进行比较。m1里的治疗效果,其实也就是一段时间内的平均治疗效果。换句话说,治疗方案A和治疗方案B的疗效所导致的分差在-2.34分,其实只不过是1,2,3时间段内抑郁症均分的差。这是RCT,所以,我们所期待的志愿者参与两组治疗方案里时间段1的差要小于1。我们对两组疗效的均值差异感兴趣,而现在的轨迹在时间段2、3里存在差异。
这个概率可能对初学者来说有点复杂,但是其执行过程很简单,我们只需要添加交互变量time和tx。
在R,我们可以使用:符号来表明变量间的交互关系。因此,我们可以这样设置:time+tx+time:tx。但是,更简短的写法是:timetx。操作符要R涵盖主要变量和治疗疗效。此时,使用操作符就能简单实现各个效应的展示。请记住,操作符也可用于高维变量交互。比如,ABC就要R包含三个主要的效应,三个两两交互的效应,以及一个三元交互效应。
现在,我们从m2模型中获得一个三元交互关系。在这个模型当中,time效应指的就是疗效A(这是特定条件下的疗效和疗效时间的交互),而txB效应就是时间点为0时的效应(数据集里一个虚的时间点)。这个术语解释起来有点复杂:系数值反映了每个时间段内两种治疗方案的疗效上的差异,其条件是取平均时间和治疗效果。口头上说,人们可以理解的是,这表明两组治疗方案是如何随着时间的推移而不同。对于每个单位时间内的增长(即,从时间段1到时间段2),在完成平均治疗效应差的分析以后,接受B治疗方案的参与者理论上在抑郁症得分方面比接受A治疗方案的要低2.88分。所以,在时间段2内,接受B治疗方案的参与者得分差是 -2.88 x 2 + 3.43 = -2.33,而在时间段3内,接受B治疗方案的参与者得分差是-2.88 x 3+ 3.43 = -5.21。我们应当时刻注意,在一个给定的时间段里对比疗效差的时候,主要疗效以及疗效变量间的交互。但是,为什么要这样?你不妨设置分析一下,当你忽略了主要治疗效应的时候,你在时间段1内所得到的疗效差是怎样的情形。
我可以告诉你,模型m2比m1和m0(上一篇文章所采用的模型)都要好,原因在于,这个数据集是我们自己创建的。但在实际生活中,我们会在选择最好的一个模型的时候会遇到很多困难。其中一种选择的方式就是,按照我们之前所讲的,使用summary()函数,以此算出额外变量的统计显著性。其它一个常用的方法就是使用方差分析(ANOVA)表(仅仅针对嵌套模型),而这种方法适合用于这个模型。
这里,我们使用anova()对m0、m1和m2模型进行方差分析,原因在于我们把m0嵌套于m1,然后把m1嵌套于m2。如果还有另外的子集,我们就把模型嵌套到那个子集上。换句话说,含有独立变量A、B的模型则嵌套于含有变量A、B、C的模型中。
如果你做过方差分析,那这个方差分析表对于你来说应该是很熟悉了。Df列表明了模型里的自由度,它简单的反映了这个案例的参数估计。例如,自由度为4的模型m0表明了这个模型预测了4个参数(1.修正截距效应系数,2.时间效应,3.随机截距方差,4.残差)。
AIC和BIC是两个常用的拟合指数。AIC和BIC都考虑到两个因素:模型的数据拟合效果有多好,和这个模型复不复杂。AIC和BIC的不同之处在于模型复杂度的罚分上(BIC对模型复杂度的罚分影响更大)。我发现,AIC理解起来更容易,因为它渐进的使用留一交叉检验法(LOOCV)来预测运行效果。我们应当理解交叉检验和预测性能的概念,随后,如果你对此不太理解,你可以先把它跳过。
LogLik列模型参数的似然对数。从根本上说,它是模型里数据拟合效果的指标。其偏差是−2×logLik−2×logLik。为什么我们需要它?因为两个嵌套模型的偏差在原假设的条件下遵循卡方检验(假设两个嵌套模型的偏差一样)。此时,我们可以把它用作模型拟合差的测试。偏差的差则在Chisq列显示。卡方检验的统计相关自由度则在Chi Df(简单来说,就是额外参数的个数)。最后一行的结果显而易见:它算出了测试两个嵌套模型的差的p值。虽然是这样,我们还是要警惕ANOVA的结果,因为在众多的候选模型中,它会导致错误类型1上升极快。
由于模型m2比其它两个候选模型AIC和BIC都要好,而对于方差分析,我们可以认为这个模型是目前为止我们拟合的最好的了。当然,这个模型还有许多要改进的地方。后续,我们可能还可以在模型的性能上进行提升,并作图进行预测。
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13