
如何使用SPSS进行一元回归分析
在数学关系式中只描述了一个变量与另一个变量之间的数量变化关系,则称其为一元回归分析。
其回归模型为
y 称为因变量,x称为自变量,称为随机误差,a,b 称为待估计的回归参数,下标i表示第i个观测值。
如果给出a和b的估计量分别为,
,则经验回归方程:
一般把称为残差, 残差
可视为扰动
的“估计量”。
例子:
湖北省汉阳县历年越冬代二化螟发蛾盛期与当年三月上旬平均气温的数据如表1-1,分析三月上旬平均温度与越冬代二化螟发蛾盛期的关系。
表1-1 三月上旬平均温度与越冬代二化螟发蛾盛期的情况表
年份
|
1961 |
1962 |
1963 |
1964 |
1965 |
1966 |
1967 |
1968 |
1969 |
1970 |
三月上旬平均温度 |
8.6 |
8.3 |
9.7 |
8.5 |
7.5 |
8.4 |
7.3 |
9.7 |
5.4 |
5.5 |
越冬代二化螟发蛾盛期(6月30日为0) |
3 |
5 |
3 |
1 |
4 |
4 |
5 |
2 |
7 |
5 |
数据保存在“DATA6-1.SAV”文件中。
1)准备分析数据
在数据编辑窗口中输入数据。建立因变量历期“历期”
在SPSS数据编辑窗口中,创建“年份”、“温度”和“发蛾盛期”变量,并把数据输入相应的变量中。或者打开已存在的数据文件“DATA6-1.SAV”。
2)启动线性回归过程
单击SPSS主菜单的“Analyze”下的“Regression”中“Linear”项,将打开如图1-1所示的线性回归过程窗口。
图1-1 线性回归对话窗口
3) 设置分析变量
设置因变量:本例为“发蛾盛期”变量,用鼠标选中左边变量列表中的“发蛾盛期”变量,然后点击“Dependent”栏左边的向右拉按钮,该变量就自动调入“Dependent”显示栏里。
设置自变量:选择一个变量作为自变量进入“Independent(S)”框中。用鼠标选中左边变量列表中的“温度”变量,然后点击“Independent(S)”栏左边的向右拉按钮,该变量就自动调入“Independent(S)”显示栏里。
注:SPSS中一元回归和多元回归以及多元逐步回归都是使用同一过程,所以该栏可以输入多个自变量。
设置控制变量
“Selection Variable”为控制变量输入栏。控制变量相当于过滤变量,即必须当该变量的值满足设置的条件时,观测量才能参加回归分析。当你输入控制变量后,单击“Rule”按钮,将打开如图1-2所示的对话。
图1-2“Rule”对话框
在“Rule”对话框中,右边的“Value”框用于输入数值,左边的下拉列表中列出了观测量的选择关系,其中各项的意义分别为:
本例的控制变量是“计算”,将它选入“Selection Variable”变量栏里,在“Rule”对话框中选择“equal to”=1。
选择标签变量
“Case Labels”框用于选择观测量的标签变量。在输出结果中,可显示该观测量的值,通过该变量的值可查看相应的观测量。
本例子选择“年份”为标签变量。
选择加权变量
在主对话框中单击“WLS”按钮,将在主对话框下方展开一个输入框,该框用于输入加权变量。本例子没有加权变量,因此不作任何设置。
4)回归方式
在“Method”框中选择一种回归分析方式。其中,各项的意义为:
本例子是一元回归,只能选第一项。
5)设置输出统计量
单击“Statistics”按钮,将打开如图1-3所示的对话框。该对话框用于设置相关参数。其中各项的意义分别为:
图1-3 “Statistics”对话框
①“Regression Coefficients”回归系数选项:
“Estimates”输出回归系数和相关统计量。
“Confidence interval”回归系数的95%置信区间。
“Covariance matrix”回归系数的方差-协方差矩阵。
本例子选择“Estimates”输出回归系数和相关统计量。
②“Residuals”残差选项:
“Durbin-Watson”Durbin-Watson检验。
“Casewise diagnostic”输出满足选择条件的观测量的相关信息。选择该项,下面两项处于可选状态:
“Outliers outside standard deviations”选择标准化残差的绝对值大于输入值的观测量;
“All cases”选择所有观测量。
本例子都不选。
③ 其它输入选项
“Model fit”输出相关系数、相关系数平方、调整系数、估计标准误、ANOVA表。
“R squared change”输出由于加入和剔除变量而引起的复相关系数平方的变化。
“Descriptives”输出变量矩阵、标准差和相关系数单侧显著性水平矩阵。
“Part and partial correlation”相关系数和偏相关系数。
“Collinearity diagnostics”显示单个变量和共线性分析的公差。
本例子选择“Model fit”项。
6)绘图选项
在主对话框单击“Plots”按钮,将打开如图1-4所示的对话框窗口。该对话框用于设置要绘制的图形的参数。图中的“X”和“Y”框用于选择X轴和Y轴相应的变量。
图1-4“Plots”绘图对话框窗口
左上框中各项的意义分别为:
“Standardized Residual Plots”设置各变量的标准化残差图形输出。其中共包含两个选项:
“Histogram”用直方图显示标准化残差。
“Normal probability plots”比较标准化残差与正态残差的分布示意图。
“Produce all partial plot”偏残差图。对每一个自变量生成其残差对因变量残差的散点图。
本例子不作绘图,不选择。
7) 保存分析数据的选项
在主对话框里单击“Save”按钮,将打开如图1-5所示的对话框。
图1-5 “Save”对话框
①“Predicted Values”预测值栏选项:
Unstandardized 非标准化预测值。就会在当前数据文件中新添加一个以字符“PRE_”开头命名的变量,存放根据回
归模型拟合的预测值。
Standardized 标准化预测值。
Adjusted 调整后预测值。
S.E. of mean predictions 预测值的标准误。
本例选中“Unstandardized”非标准化预测值。
②“Distances”距离栏选项:
Mahalanobis: 距离。
Cook’s”: Cook距离。
Leverage values: 杠杆值。
③“Prediction Intervals”预测区间选项:
Mean: 区间的中心位置。
Individual: 观测量上限和下限的预测区间。在当前数据文件中新添加一个以字符“LICI_”开头命名的变量,存放
预测区间下限值;以字符“UICI_”开头命名的变量,存放预测区间上限值。
Confidence Interval:置信度。
本例选中“Individual” 观测量上限和下限的预测区间。
④“Save to New File”保存为新文件:
选中“Coefficient statistics”项将回归系数保存到指定的文件中。本例不选。
⑤ “Export model information to XML file” 导出统计过程中的回归模型信息到指定文件。本例不选。
⑥“Residuals” 保存残差选项:
“Unstandardized”非标准化残差。
“Standardized”标准化残差。
“Studentized”学生氏化残差。
“Deleted”删除残差。
“Studentized deleted”学生氏化删除残差。
本例不选。
⑦“Influence Statistics” 统计量的影响。
“DfBeta(s)”删除一个特定的观测值所引起的回归系数的变化。
“Standardized DfBeta(s)”标准化的DfBeta值。
“DiFit” 删除一个特定的观测值所引起的预测值的变化。
“Standardized DiFit”标准化的DiFit值。
“Covariance ratio”删除一个观测值后的协方差矩隈的行列式和带有全部观测值的协方差矩阵的行列式的比率。
本例子不保存任何分析变量,不选择。
8)其它选项
在主对话框里单击“Options”按钮,将打开如图1-6所示的对话框。
图1-6 “Options”设置对话框
①“Stepping Method Criteria”框用于进行逐步回归时内部数值的设定。其中各项为:
“Use probability of F”如果一个变量的F值的概率小于所设置的进入值(Entry),那么这个变量将被选入回归方程中;当变量的F值的概率大于设置的剔除值(Removal),则该变量将从回归方程中被剔除。由此可见,设置 “Use probability of F”时,应使进入值小于剔除值。
“Ues F value”如果一个变量的F值大于所设置的进入值(Entry),那么这个变量将被选入回归方程中;当变量的F值小于设置的剔除值(Removal),则该变量将从回归方程中被剔除。同时,设置“Use F value”时,应使进入值大于剔除值。
②“Include constant in equation”选择此项表示在回归方程中有常数项。
本例选中“Include constant in equation”选项在回归方程中保留常数项。
③“Missing Values”框用于设置对缺失值的处理方法。其中各项为:
“Exclude cases listwise”剔除所有含有缺失值的观测值。
“Exchude cases pairwise”仅剔除参与统计分析计算的变量中含有缺失值的观测量。
“Replace with mean”用变量的均值取代缺失值。
本例选中“Exclude cases listwise”。
9)提交执行
在主对话框里单击“OK”,提交执行,结果将显示在输出窗口中。见表1-2至表1-5。
10) 结果分析
结果:
表1-2 给出了回归的方法是全回归模式,模型编号为1,自变量是“温度”,因变量是“发蛾盛期”。
表1-2
表1-3 是回归模型统计量:R 是相关系数;R Square 相关系数的平方,又称判定系数,判定线性回归的拟合程度:用来说明用自变量解释因变量变异的程度(所占比例);Adjusted R Square 调整后的判定系数;Std. Error of the Estimate 估计标准误差。
表1-3
表1-4 回归模型的方差分析表,F值为11.748,显著性概率是0.009,表明回归极显著。
表1-4
表1-5 回归模型系数表,以及t检验结果。
表1-5
分析:
从上面的回归分析结果表明:三月上旬平均温度与越冬代二化螟发蛾盛期的关系极为密切,相关系数0.7713;同时方差分析表明,其显著性水平为0.009。
根据回归系数表6-5,可写出回归方程如下:
其中x代表三月上旬平均温度; 代表越冬代二化螟发蛾盛期(其值加上7月0日为实际日期)。
预测值的回归误差可用剩余均方估计:
![]() |
|
预测
由于在分析时使用了控制变量“计算”,数据中第11个记录的数据在建立回归方程时,并没有使用它,是留作用于预测的。所以,在选择了保存预测值选项,用模型预测的结果可以在数据窗口中看到(图1-7)。
图6-7 分析过程执行后的数据窗口
在图6-7中得知,用1971年三月上旬平均温度4.3,预测值为7.1天,95%的置信区间是3.5~10.6天,预测值的有关统计量见表1-6。
表1-6
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20