大数据在旅游行业中的应用和前景
随着大数据的应用热潮,在旅游行业也得到了业界的高度重视,大数据更加贴近消费者、深刻理解需求、高效分析信息并作出预判。如今的数据已经成为一种重要的战略资产,在未来的商业竞争中占据重要位置
随着大数据的应用热潮,在旅游行业也得到了业界的高度重视,大数据更加贴近消费者、深刻理解需求、高效分析信息并作出预判。如今的数据已经成为一种重要的战略资产,在未来的商业竞争中占据重要位置。
一、大数据在旅游行业的发展前景:
随着大数据的应用热潮,在旅游行业也得到了业界的高度重视,大数据更加贴近消费者、深刻理解需求、高效分析信息并作出预判。如今的数据已经成为一种重要的战略资产,极富开采价值。并在未来的商业竞争中占据重要位置。
二、 大数据对旅游行业的影响
2.1 提高服务质量
利用旅游行业数据库进行分析,建立纵向和横向的纬度,进行分析建模,依托行业数据分析推演,可以有效的知道旅游政府部门和景区的公共服务体系建设,真正提高旅游公共服务满意度。
2.2 改善经营管理
通过对大量数据的挖掘和分析,有效指导旅游局和景区企业的管理工作。根据游客的特征和偏好,提供有力的旅游产品和服务,利用大数据进行产业运行状况分析,有效的运行监测,对产业实施有效的管理,是推动旅游产业建设的必要手段。
2.3 改变营销策略
通过大数据可以了解用户画像数据、掌握游客的行为和偏好,真正的实现"投其所好",以实现推广资源效率和效果最大化。
三、大数据在旅游行业中应用
省旅游局和5A景区的应用
旅游大数据发展带动了旅游产业的全面升级,通过大数据深挖游客的心理研究分析和旅游产品体验,一切以游客的需求为关注点,通过数据分析反映旅游客源地域、哪些产品是消费者关注的,关注些什么,从中提取新的深刻见解,为旅游目的地品牌的提升、营销推广和舆情监测等提供可视化的数据服务。
旅行社和OTA的应用
通过大数据的分析,准确的掌握到旅游客源来自哪些地区,可以了解游客喜欢什么样的产品,从而开发迎合市场需求的产品线路。
大数据有助于精确旅游行业市场定位
大数据应用,其真正的核心在于挖掘数据中蕴藏的情报价值,那么,对于旅游行业来说,如何来借助大数据为旅游行业中的创新性应用,以下几个方面来概述。
3.1 大数据有助于精确旅游行业市场定位
旅游品牌市场定位个性化:
一个成功的品牌离不开精准的市场定位,能够使品牌快速成长,而基于市场数据分析和调研是进行品牌定位的第一步。在旅游行业中充分挖局品牌价值,需要架构大数据战略,拓宽旅游行业调研数据的广度和深度,从数据中了解旅游行业市场构成、细分市场特征、消费者需求和竞争者状况等众多因素,在科学系统的信息数据收集、管理、分析的基础上,提出更好的解决问题的方案和建议,保证旅游品牌市场定位独具个性化。
项目评估和可行性分析:
旅游局和企业想开拓某一区域旅游行业市场,首先要进行项目评估和可行性分析,才能最终决定开拓这块市场的必要性。如果适合,那么这个区域人口是多少?游客水平怎么样?客户的消费习惯是什么?市场对旅游品牌和旅游产品的认知度怎么样?当前的市场情况是怎么样的?游客的消费喜好是什么等等。
构建满足市场需求的旅游产品:
通过项目评估报告,收集海量信息构成了旅游行业市场调研的大数据,对这些大数据的分析就是市场定位过程。只有定位准确才能构建出满足市场需求的旅游产品,使旅游品牌在竞争中立于不败之地。
3.2 大数据成为旅游行业市场营销的利器
信息总量暴涨,隐藏的是旅游行业的市场需求、竞争情报 。
每天在Facebook、Twitter、微博、微信、论坛、新闻评论、电商平台等等上分享各种文本、照片、视频、音频、数据等信息高达的几百亿甚至几千亿条,这些信息涵盖着、商家信息、个人信息、行业资讯、产品使用体验、浏览记录、成交记录等海量的动态信息。这些数据通过聚类,可以形成行业大数据,其背后隐藏的是行业的市场需求、竞争情报,闪现着巨大的财富价值。
从两个方面来阐述旅游行业市场营销工作中的重中之重。
一是数据获取及分析:通过获取数据统计和分析,来充分了解市场信息,掌握竞争者的动态,知晓产品在竞争群中所处的市场地位,来达到“知彼知己,百战不殆”的目的;
二是数据积累及挖掘:企业通过积累和挖掘旅游行业消费者档案数据,有助于分析游客的消费行为和价值趣向,便于更好地引导潜在目标游客,以及让游客得到更好的旅游体验。
以旅游行业在对顾客的消费行为和趣向分析方面为例,收集和整理游客的消费行为方面的信息数据,如:游客的以往购买旅游产品的花费、选择的产品渠道、旅游产品的类型和偏好、游客对旅游目的地的品牌印象等。收集到了这些数据,建立游客大数据库,便可通过统计和分析来掌握消费者的消费行为、兴趣偏好和产品的市场口碑现状,再根据这些总结出来的行为、兴趣爱好和产品口碑现状,制定有针对性的营销方案和营销战略,投消费者所好,那么其带来的营销效应是可想而知的。
3.3 大数据支撑旅游行业收益管理
要达到收益管理的目标,需求预测、细分市场和敏感度分析是此项工作的三个重要环节,而这三个的环节推进的基础就是大数据。
需求预测:
是通过对建构的大数据统计与分析,采取科学的预测推演方法,通过建立数学模型,了解旅游行业潜在的市场需求,未来一段时间每个细分市场的产品销售量和产品价格走势等,在不同的市场波动周期以合适的产品和价格投放市场,获得潜在的收益。
细分市场:
为企业预测销售量和实行差别定价提供了条件,其科学性体现在通过旅游行业市场需求预测来制定和更新价格,最大化各个细分市场的收益。
敏感度分析:
是通过需求价格弹性分析技术,对不同细分市场的价格进行优化,最大限度地挖掘市场潜在的收入。
3.4 大数据创新旅游行业需求开发
互联网交互性大数据蕴藏巨大的价值:随着论坛、博客、微博、微信、电商平台、点评网等媒介在PC端和移动端的创新和发展,公众分享信息变得更加便捷自由,而公众分享信息的主动性促使了“网络评论”这一新型舆论形式的发展。成千上亿的网络评论形成了交互性大数据,其中蕴藏了巨大的旅游行业需求开发价值。
对互联网评论数据的搜集和分析,能有效提高市场竞争力和收益能力,也是大数据价值所在:消费者对旅游服务及产品简单表扬与评批演变得更加的客观真实,游客的评价内容也更趋于专业化和理性化,发布的渠道也更加广泛。作为旅游局和企业,如果能对网上旅游行业的评论数据进行收集,建立网评大数据库,然后再利用分词、聚类、情感分析了解消费者的消费行为、价值趣向、评论中体现的新消费需求和旅游品质中存在问题,以此来改进和创新产品,制订合理的价格及提高服务质量,都会有效地提高市场竞争力和收益能力。
3.5 大数据在海外旅游行业中所呈现的服务功能
3.5.1 旅游传播数据分析:
提供7x24小时实时、精准的多维度数据挖和分析,提供丰富直观的数据查询、分析和预测服务;
3.5.2 竞品市场数据监测:
通过深层次的数据挖掘,透析竞争格局;实现多种数据纬度的汇聚沉淀,准确展现宏观市场状态,
3.5.3 海外用户市场调研:
通过多种语言纬度、多地域维度、多时间维度、多数据维度、多竞争维度、多平台维度的海外数据分析服务,从数据中了解目标市场构成、细分市场特征、游客特征和兴趣爱好等,形成完整的用户画像。
3.5.4 旅游舆情监测服务:
舆情监测:基于全球领先的互联网采集监控技术而研发,具有发现快,信息全,分析准的优势。可让用户眼观六路耳听八方,在第一时间发现负面舆情,第一时间全面了解民意民情动态,平台及时反映最新舆情信息自动收集呈现。
口碑监测:论坛、微博、博客、新闻评论作是目前网民在网络上发表个人意见,由于网民的数量庞大,发表信息没有门槛,相关信息传播速度极快,其形成的舆论力量正深刻改变着网民的思想形态和社会面貌。
3.5.5 旅游品牌影响力评估:
基于整个市场现状的分析,从细分市场、营销策略定位、竞争定位、传播渠道等方面来分析,分析的维度则可以从游客关注度、品牌美誉度、品牌影响力等展开。清晰了解品牌受到哪些目标客源国、哪些用户群体的关注、关注度如何、关注的内容是什么等等,多维度展现旅游品牌在不同地域、不同平台上的整体声量。
四、旅游大数据带了的新的挑战
4.1 数据挖掘搜集复杂
大数据收集必须要明确业务所需,再对自已有价值的数据进行收集整合,才能合理收集运用大数据。
4.2 经验与数据的结合
有了数据还要做判断,把这种杂乱无章整理成我们能实际能应用的。通过我们以往的经验,再与数据结合,从而分析确定目标客户。
4.3 分析与优化的结合
分析的目的是优化,还要做决策上的改变和调整。优化则是会玩数据,科学的做好统计并加以分析,。
4.4 数据开放与隐私的权衡
随着公众对于隐私泄露担忧的加剧,政府也必将出台相应的管理法案,对企业的数据挖据和分享行为进行规范,这也将是必然的。
4.5 大数营销的难点
大数据营销面临的不仅仅是技术和工具问题,更重要的是要转变经营思维和营销策略。大数据分析的特点之一是寻找关联性,这样就可以基于数据分析达成有的放矢营销,进行广告的精准推送。
数据分析咨询请扫描二维码
统计学基础 - 理解统计学的基本概念和方法是数据分析师必备的技能之一。统计学为他们提供了处理数据、进行推断和建模的基础。 数 ...
2024-11-25数据分析师在如今信息爆炸的时代扮演着至关重要的角色。他们不仅需要具备扎实的数据分析技能,还需要不断学习和适应不断发展的技 ...
2024-11-25数据分析师的工作职责涉及多个关键方面,从数据的获取到处理、分析再到可视化,旨在为企业的决策提供有力支持。让我们深入了解数 ...
2024-11-25数据分析师:洞察力量的引擎 数据分析师的兴起 数据分析师行业目前正处于快速发展阶段,市场需求持续增长,薪资水平也有所提升。 ...
2024-11-25数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-25数据分析是当今社会中不可或缺的一项技能,涵盖了广泛的工具和技术。其中,掌握各种数据处理函数对于数据分析师至关重要。本文将 ...
2024-11-25“大数据治理”是一个涵盖广泛的复杂概念,其核心在于确保大规模、多样化的数据资源能够被有效管理和利用。不仅涉及数据的采集、 ...
2024-11-25一、引言 背景介绍 随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会的重要资产。大数据的兴起不仅推动了各行各业 ...
2024-11-25《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22