大数据时代下传统数据分析在商业运用中的诸多弊端
提到“大数据分析”,人们近两年对这个词并不陌生,国内媒体对于有关“大数据”及“数据分析”概念的大范围炒作,使得人人都知道意识到了“大数据”时代的到来。无论在哪家企业的商业模式里,大数据分析近乎成为了一种标配,而似乎一夜之间,国内各型各色的数据分析企业也如雨后春笋般冒了出来。
的确,大数据时代已经到来。
根据调查,去年全球大数据和业务分析总收入约为1229亿美元,同比近三年内数据,呈现较大增幅趋势。毫无疑问,随着大数据时代的到来,大数据分析技术对各行各业商业化运作都已产生重大影响。 尤其在一些垂直领域,包括汽车、家装、电子产品等行业在全球市场大数据分析技术运用的最多,这部分全球收入共占据约228亿美元。
在中国,我们熟知的很多知名企业都已经将大数据分析技术运用在自己的服务中。例如,阿里通过分析用户购物习惯进行商品类目推荐,滴滴通过数据计算为用户置配车辆,京东利用商品库存分析进行仓储管理。更多的中小企业也开始意识到大数据分析的重要性,并加入到大数据分析的行列之中。
但是随着“大数据”和“数据分析”概念炒作的升温,也让很多企业CIO/CTO们对其产生“畏惧”。一方面,企业发展中不可避免的充斥着很多无从分析的非结构化数据。在大数据分析中这类数据虽然至关重要,但目前我国绝大多数的数据分析公司还尚不具备对其分析的能力。而传统的结构化数据分析在国内仍存在不科学、周期长、性价比低及无法产生直接经济效益等弊端。另一方面,由于大数据分析具有海量的数据规模、快速的数据流动、多样的数据类型和价值密度低等特征,企业通过部署及使用大数据工具可以获取更精准的资源,从而提高自身利润率和竞争优势。因此,在庞大的市场需求下。尽管不少数据分析公司不具备大数据分析的能力,还是被驱使着进入到这片红海之中,这也使得目前国内市场数据分析公司水平良莠不齐。
而企业即使了解大数据分析所能带来的红利,也因对大数据分析缺乏基础认知,不能真正选择适合自身业务的数据分析模式。很多企业级的客户自身在进行大数据分析时,仍以结构化数据分析为主,忽略了相对内涵丰富的非结构化数据。
国内企业进行结构化数据分析通常采取“招标+外包”的传统模式。企业级客户按照历史经验应先建立起自己的数据分析KPI(关键绩效指标),然后以此为参照将整个数据分析任务外包给第三方数据公司,经过数月的分析后,由数据公司将分析结果返还给甲方企业。企业依据分析结果再进行策略调整。
在面对如今数据爆炸的时代,传统数据分析在商业运用中暴露的诸多弊端,主要可以归结为以下七条:
第一,非结构化数据往往内涵更为丰富并且至关重要。目前我们所认知的数据分为两大类,一类可以用数据或统一的结构加以表示,被称之为结构化数据,例如数字、符号等,而无法用数字或统一结构表示的另一类信息则被称为非结构化数据,如文本、图像、声音、网页等。
企业以往使用的传统数据分析系统仅仅只能对结构化和关系性的数据进行处理分析,这部分数据一般是已知且容易理解的,通过抽样读取很小一部分数据集来对整个数据集进行预判。而在企业发展过程中,所产生的数据其存在形式往往各式各样,非结构化数据分析正是基于企业海量数据处理分析,所得出的结果也更为精准。
第二,KPI非数据驱动生成,缺乏科学性。国内企业数据分析前制定KPI标准常常以人为经验得出,而不是由数据驱动并且实时生成的,因此造成的结果则是KPI常年不变,并且缺乏科学性。在最终数据分析上会存在较大误差。
第三,数据分析时效性差。国内企业在进行大数据分析时采用第三方外包的方式,整个周期至少也要数月的时间,往往返还回结果时,企业内部的相关数据已经完全改变了。
第四,浪费了企业内部的分析师资源。不少企业都用有自己的内部分析师,采用外包的方式,完全浪费了这部分资源,企业从经济效益上很不划算。而且在数据衔接上,由于第三方数据公司并不清楚企业的详细情况,通过数据分析无法真正了解数据背后所蕴含的实际原因。
第五,数据安全性无法保障。外包的数据安全性问题一直是国内企业CTO的老大难问题,因为一些企业核心数据会涉及到商业机密,企业若想确保数据以安全的方式交予第三方大数据公司,往往需要耗费额外的时间和经济成本。
第六,数据分析结果不能与企业经济效益直接挂钩。由于第三方数据公司的介入,国内企业在得到数月的分析结构后,从内部执行上并不能很好地将分析结果运用到企业经济效益的改善上,数据分析最终成为了一堆没用的数字。
第七,第三方大数据公司分析能力有限。国内大部分第三方公司由于缺乏动态、数据驱动的数据分析工具,更多时候也仅是依照经验制定KPI和进行数据分析,这样分析出的结果同样缺乏科学性。
正是基于上述弊端,才使国内企业陷入了数据分析的困局。其实,非结构化数据的分析,是每个企业都是非常渴望的。但由于受国内技术的制约以及工具的缺乏,公开市场上鲜有出色的分析平台。大数据分析的核心技术只掌握在一些顶尖企业和专业数据分析公司手中,通常价格不菲。
我们相信,在未来的大数据分析技术中,非结构化数据分析将逐渐取代传统的结构化数据分析技术,通过海量的数据分析来为企业应对更为复杂的商业模型,从而替企业提高市场洞察力并创造价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-3001专家简介 徐杨老师,CDA数据科学研究院教研副总监,主要负责CDA认证项目以及机器学习/人工智能类课程的研发与授课,负责过中 ...
2025-01-29持证人简介 郭畅,CDA数据分析师二级持证人,安徽大学毕业,目前就职于徽商银行总行大数据部,两年工作经验,主要参与两项跨部 ...
2025-01-282025年刚开启,知乎上就出现了一个热帖: 2024年突然出现的经济下行,使各行各业都感觉到压力山大。有人说,大环境越来越不好了 ...
2025-01-27在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-01-26数据指标体系 “数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而 ...
2025-01-26在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-25俗话说的好“文不如表,表不如图”,图的信息传达效率很高,是数据汇报、数据展示的重要手段。好的数据展示不仅需要有图,还要选 ...
2025-01-24数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪70 ...
2025-01-24又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-23“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06