SPSS:syntax应用中临时变量的技巧
很多的时候,我们计算过程中的一些变量,一些处理结果都只是中间过渡一下,便于后面的计算和分析;还有的时候要得到分析结果少了这些临时变量又不行,今天这里简单的说说几种常用的SPSS syntax“临时变量”应用技巧。
一、临时性命令Temporary
有的时候,我们需要变换已有变量观测值计算相关结果,但又不希望改变原有数据表中的数据。例如,游戏中有个概念叫Arpu,其与游戏的平均在线人数有关,这里我们知道目前游戏的平均在线人数,预测做市场推广之后游戏平均在线人数大概有5%的增长,利用新的平均在线人数来计算收益,就可以用temporary命令来处理这个5%的问题,而不改变原有数据。下面看看temporary运用的简单示例:
----------------------------------------------------------------
#1 DATA LIST FREE /var1 var2.
#2 BEGIN DATA
#3 1 2
#4 3 4
#5 5 6
#6 7 8
#7 9 10
#8 END DATA.
#9 TEMPORARY.
#10 COMPUTE var1=var1+ 5.
#11 RECODE var2 (1 thru 5=1) (6 thru 10=2).
#12 FREQUENCIES
#13 /VARIABLES=var1 var2
#14 /STATISTICS=MEAN STDDEV MIN MAX.
#15 DESCRIPTIVES
#16 /VARIABLES=var1 var2
#17 /STATISTICS=MEAN STDDEV MIN MAX.
----------------------------------------------------------------
代码解析:
上面的代码利用temporary属性,改变var1和var2的临时值,进而计算var1\var2变换后的相关统计量。(注:temporary命令只对其后的一条命令起作用。在这个例子中,temporary只对frequencies起作用,而descriptives命令还是按原始观测值计算)
第1-8行创建一个含有var1、var2的数据集,并给var1输入1、3、5、7、9,var2输入2、4、6、8、10的观测值
第9-11行给var1、var2赋予新的值,但不改变原数据集中var1、var2的观测值
第12-17行则是Frequencies和Descriptives命令,用来描述统计VAR1和VAR2
二、临时变量#VAR
SPSS Syntax语句中所有的临时变量都是以"#"作为前缀,什么是临时变量,在SPSS中临时变量就是指运算用到,但不在结果和数据集中显现出来的变量。例如:我们要通过A计算C,但A又没办法直接计算,我们必须借助中间变量B才能达到计算目的,在整个过程中B都没明显的表现出来,那么此时B就可视为临时变量,为了方便大家更好的理解,这里还是用一个简单的例子来说明问题,示例代码如下:
---------------------------------------------------------------
#1 DATA LIST FREE / var1.
#2 BEGIN DATA
#3 1 2 3 4 5
#4 END DATA.
#5 COMPUTE var2=1.
#6 LOOP #i=1 TO var1.
#7 - COMPUTE var2=var2 * #i.
#8 END LOOP.
#9 EXECUTE.
--------------------------------------------------------------
代码解析:
上面的代码利用临时变量i做循环,通过var1计算var2,来完成一个迭代的过程。var1的初始观测值为1、2、3、4、5,var2的初始值为1,临时变量i从1取到5,通过compute命令计算出var2的值。
第1-4行创建含有var1的数据集,var1包含5个观测值
第5行对var2进行初始赋值,产生一列变量名为var2,观测值为1的变量
第6-8行为一个循环结构,循环N次计算var2的值(N为var1的观测值数)
第9行为即时计算命令execute,类似于transform菜单栏中的running pending transforms(快捷键CTRL-G)
三、其他
除了上面说的2种情况外,其他更多的情形则是伴随具体的分析方法产生的,如一次分析的结果作为下一次分析的数据,常见的如距离分析(proximities)的结果作为聚类分析(cluster)的原始数据,又或者是因子分析的结果作为回归分析的数据,都可以采用将数据结果存储为临时文件的形式来方便计算,譬如常用的matrix out和matrix in子命令就能达到如此效果,由于时间关系,这里不再深入说明。 总之,所有的临时性命令都是为了方便计算,有点类似于EXCEL中辅助列的作用。
小贴士:
TEMPORARY常与以下命令一起使用:
1)数据转换命令compute,recode,if和count,以及重复计算命令Do repeat
2)循环结构语句loop和do if
3)格式变换语句print formats,write formats和formats
4) 观测值选择加权语句select if,sample,filter和weight
5)变量声明语句numric,string以及矢量申明语句vector
6) 标签处理相关语句variable labels,value labels和missing values命令
7)文件存储语句Xsave及split file.
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20