
用Python进行机器学习小案例
本文是用Python编程语言来进行机器学习小实验的第一篇。主要内容如下:
读入数据并清洗数据
探索理解输入数据的特点
分析如何为学习算法呈现数据
选择正确的模型和学习算法
评估程序表现的准确性
读入数据 Reading the data
当读入数据时,你将面临处理无效或丢失数据的问题,好的处理方式相比于精确的科学来说,更像是一种艺术。因为这部分处理适当可以适用于更多的机器学习算法并因此提高成功的概率。
用NumPy有效地咀嚼数据,用SciPy智能地吸收数据
Python是一个高度优化的解释性语言,在处理数值繁重的算法方面要比C等语言慢很多,那为什么依然有很多科学家和公司在计算密集的领域将赌注下在Python上呢?因为Python可以很容易地将数值计算任务分配给C或Fortran这些底层扩展。其中NumPy和SciPy就是其中代表。NumPy提供了很多有效的数据结构,比如array,而SciPy提供了很多算法来处理这些arrays。无论是矩阵操作、线性代数、最优化问题、聚类,甚至快速傅里叶变换,该工具箱都可以满足需求。
读入数据操作
这里我们以网页点击数据为例,第一维属性是小时,第二维数据是点击个数。
importscipyasspdata= sp.genfromtxt('web_traffic.tsv',delimiter='\t')
预处理和清洗数据
当你准备好了你的数据结构用于存储处理数据后,你可能需要更多的数据来确保预测活动,或者拥有了很多数据,你需要去思考如何更好的进行数据采样。在将原始数据(rawdata)进行训练之前,对数据进行提炼可以起到很好的作用,有时,一个用提炼的数据的简单的算法要比使用原始数据的高级算法的表现效果要好。这个工作流程被称作特征工程(feature engineering)。Creative and intelligent that you are, you will immediately see the results。
由于数据集中可能还有无效数值(nan),我们可以事先看一下无效值的个数:
hours=data[:,0]hits=data[:,1]sp.sum(sp.isnan(hits))
用下面的方法将其过滤掉:
#cleaning the datahours= hours[~sp.isnan(hits)]hits= hits[~sp.isnan(hits)]
为了将数据给出一个直观的认识,用Matplotlib的pyplot包来将数据呈现出来。
importmatplotlib.pyplotaspltplt.scatter(hours,hits)plt.title("Web traffic over the last month")plt.xlabel("Time")plt.ylabel("Hits/hour")plt.xticks([w*7*24for w in range(10)], ['week %i'%w for w in range(10)])plt.autoscale(tight=True)plt.grid()plt.show()
其显示效果如下:
选择合适的学习算法
选择一个好的学习算法并不是从你的工具箱中的三四个算法中挑选这么简单,实际上有更多的算法你可能没有见过。所以这是一个权衡不同的性能和功能需求的深思熟虑的过程,比如执行速度和准确率的权衡,,可扩展性和易用性的平衡。
现在,我们已经对数据有了一个直观的认识,我们接下来要做的是找到一个真实的模型,并且能推断未来的数据走势。
用逼近误差(approximation error)来选择模型
在很多模型中选择一个正确的模型,我们需要用逼近误差来衡量模型预测性能,并用来选择模型。这里,我们用预测值和真实值差值的平方来定义度量误差:
deferror(f, x, y): returnsp.sum((f(x)-y)**2)
其中f表示预测函数。
用简单直线来拟合数据
我们现在假设该数据的隐含模型是一条直线,那么我们还如何去拟合这些数据来使得逼近误差最小呢?SciPy的polyfit()函数可以解决这个问题,给出x和y轴的数据,还有参数order(直线的order是1),该函数给出最小化逼近误差的模型的参数。
fp1, residuals, rank,sv, rcond =sp.polyfit(hours, hits,1, full=True)
fp1是polyfit函数返回模型参数,对于直线来说,它是直线的斜率和截距。
如果polyfit的参数full为True的话,将得到拟合过程中更多有用的信息,这里只有residuals是我们感兴趣的,它正是该拟合直线的逼近误差。
然后将该线在图中画出来:
#fit straightlinemodel fp1, residuals, rank,sv, rcond =sp.polyfit(hours, hits,1, full=True) fStraight =sp.poly1d(fp1) #draw fitting straightlinefx =sp.linspace(0,hours[-1],1000) # generateX-valuesforplotting plt.plot(fx, fStraight(fx), linewidth=4) plt.legend(["d=%i"% fStraight.order],loc="upper left")
用更高阶的曲线来拟合数据
用直线的拟合是不是很好呢?用直线拟合的误差是317,389,767.34,这说明我们的预测结果是好还是坏呢?我们不妨用更高阶的曲线来拟合数据,看是不是能得到更好的效果。
fCurve3p =sp.polyfit(hours, hits,3) fCurve3 =sp.poly1d(fCurve3p)print"Error of Curve3 line:",error(fCurve3,hours,hits) fCurve10p =sp.polyfit(hours, hits,10) fCurve10 =sp.poly1d(fCurve10p)print"Error of Curve10 line:",error(fCurve10,hours,hits) fCurve50p =sp.polyfit(hours, hits,50) fCurve50 =sp.poly1d(fCurve50p)print"Error of Curve50 line:",error(fCurve50,hours,hits)
其逼近误差为:
Error of straight line: 317389767.34
Error of Curve2 line: 179983507.878
Error of Curve3 line: 139350144.032
Error of Curve10 line: 121942326.364
Error of Curve50 line: 109504587.153
这里我们进一步看一下实验结果,看看我们的预测曲线是不是很好的拟合数据了呢?尤其是看一下多项式的阶数从10到50的过程中,模型与数据贴合太紧,这样模型不但是去拟合数据背后的模型,还去拟合了噪声数据,导致曲线震荡剧烈,这种现象叫做过拟合。
小结
从上面的小实验中,我们可以看出,如果是直线拟合的话就太简单了,但多项式的阶数从10到50的拟合又太过了,那么是不是2、3阶的多项式就是最好的答案呢?但我们同时发现,如果我们以它们作为预测的话,那它们又会无限制增长下去。所以,我们最后反省一下,看来我们还是没有真正地理解数据。
衡量性能指标
作为一个ML的初学者,在衡量学习器性能方面会遇到很多问题或错误。如果是拿你的训练数据来进行测试的话,这可能是一个很简单的问题;而当你遇到的不平衡的训练数据时,数据就决定了预测的成功与否。
回看数据
我们再仔细分析一下数据,看一下再week3到week4之间,好像是有一个明显的拐点,所以我们把week3.5之后的数据分离出来,训练一条新的曲线。
inflection=3.5*7*24#the time of week3.5is an inflectiontime1= hours[:inflection]value1= hits[:inflection]time2= hours[inflection:]value2= hits[inflection:]fStraight1p= sp.polyfit(time1,value1,1)fStraight1= sp.poly1d(fStraight1p)fStraight2p= sp.polyfit(time2,value2,1)fStraight2= sp.poly1d(fStraight2p)
显然,这两条直线更好的描述了数据的特征,虽然其逼近误差还是比那些高阶多项式曲线的误差要大,但是这种方式的拟合可以更好的获取数据的发展趋势。相对于高阶多项式曲线的过拟合现象,对于低阶的曲线,由于没有很好的描述数据,而导致欠拟合的情形。所以为了更好的描述数据特征,使用2阶曲线来拟合数据,来避免过拟合和欠拟合现象的发生。
训练与测试
我们训练得到了一个模型,这里就是我们拟合的两个曲线。为了验证我们训练的模型是否准确,我们可以在最初训练时将一部分训练数据拿出来,当做测试数据来使用,而不仅仅通过逼近误差来判别模型好坏。
总结
这一小节作为机器学习小实验的引入,主要传递两点意思:
1、要训练一个学习器,必须理解和提炼数据,将注意力从算法转移到数据上
2、学习如何进行机器学习实验,不要混淆训练和测试数据
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
全球第一!上交AI智能体炼成Kaggle特级大师登顶OpenAI MLE-bench 编辑:KingHZ 好困 【新智元导读】刚刚,由上海交通大学人 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24