用Python进行机器学习小案例
本文是用Python编程语言来进行机器学习小实验的第一篇。主要内容如下:
读入数据并清洗数据
探索理解输入数据的特点
分析如何为学习算法呈现数据
选择正确的模型和学习算法
评估程序表现的准确性
读入数据 Reading the data
当读入数据时,你将面临处理无效或丢失数据的问题,好的处理方式相比于精确的科学来说,更像是一种艺术。因为这部分处理适当可以适用于更多的机器学习算法并因此提高成功的概率。
用NumPy有效地咀嚼数据,用SciPy智能地吸收数据
Python是一个高度优化的解释性语言,在处理数值繁重的算法方面要比C等语言慢很多,那为什么依然有很多科学家和公司在计算密集的领域将赌注下在Python上呢?因为Python可以很容易地将数值计算任务分配给C或Fortran这些底层扩展。其中NumPy和SciPy就是其中代表。NumPy提供了很多有效的数据结构,比如array,而SciPy提供了很多算法来处理这些arrays。无论是矩阵操作、线性代数、最优化问题、聚类,甚至快速傅里叶变换,该工具箱都可以满足需求。
读入数据操作
这里我们以网页点击数据为例,第一维属性是小时,第二维数据是点击个数。
importscipyasspdata= sp.genfromtxt('web_traffic.tsv',delimiter='\t')
预处理和清洗数据
当你准备好了你的数据结构用于存储处理数据后,你可能需要更多的数据来确保预测活动,或者拥有了很多数据,你需要去思考如何更好的进行数据采样。在将原始数据(rawdata)进行训练之前,对数据进行提炼可以起到很好的作用,有时,一个用提炼的数据的简单的算法要比使用原始数据的高级算法的表现效果要好。这个工作流程被称作特征工程(feature engineering)。Creative and intelligent that you are, you will immediately see the results。
由于数据集中可能还有无效数值(nan),我们可以事先看一下无效值的个数:
hours=data[:,0]hits=data[:,1]sp.sum(sp.isnan(hits))
用下面的方法将其过滤掉:
#cleaning the datahours= hours[~sp.isnan(hits)]hits= hits[~sp.isnan(hits)]
为了将数据给出一个直观的认识,用Matplotlib的pyplot包来将数据呈现出来。
importmatplotlib.pyplotaspltplt.scatter(hours,hits)plt.title("Web traffic over the last month")plt.xlabel("Time")plt.ylabel("Hits/hour")plt.xticks([w*7*24for w in range(10)], ['week %i'%w for w in range(10)])plt.autoscale(tight=True)plt.grid()plt.show()
其显示效果如下:
选择合适的学习算法
选择一个好的学习算法并不是从你的工具箱中的三四个算法中挑选这么简单,实际上有更多的算法你可能没有见过。所以这是一个权衡不同的性能和功能需求的深思熟虑的过程,比如执行速度和准确率的权衡,,可扩展性和易用性的平衡。
现在,我们已经对数据有了一个直观的认识,我们接下来要做的是找到一个真实的模型,并且能推断未来的数据走势。
用逼近误差(approximation error)来选择模型
在很多模型中选择一个正确的模型,我们需要用逼近误差来衡量模型预测性能,并用来选择模型。这里,我们用预测值和真实值差值的平方来定义度量误差:
deferror(f, x, y): returnsp.sum((f(x)-y)**2)
其中f表示预测函数。
用简单直线来拟合数据
我们现在假设该数据的隐含模型是一条直线,那么我们还如何去拟合这些数据来使得逼近误差最小呢?SciPy的polyfit()函数可以解决这个问题,给出x和y轴的数据,还有参数order(直线的order是1),该函数给出最小化逼近误差的模型的参数。
fp1, residuals, rank,sv, rcond =sp.polyfit(hours, hits,1, full=True)
fp1是polyfit函数返回模型参数,对于直线来说,它是直线的斜率和截距。
如果polyfit的参数full为True的话,将得到拟合过程中更多有用的信息,这里只有residuals是我们感兴趣的,它正是该拟合直线的逼近误差。
然后将该线在图中画出来:
#fit straightlinemodel fp1, residuals, rank,sv, rcond =sp.polyfit(hours, hits,1, full=True) fStraight =sp.poly1d(fp1) #draw fitting straightlinefx =sp.linspace(0,hours[-1],1000) # generateX-valuesforplotting plt.plot(fx, fStraight(fx), linewidth=4) plt.legend(["d=%i"% fStraight.order],loc="upper left")
用更高阶的曲线来拟合数据
用直线的拟合是不是很好呢?用直线拟合的误差是317,389,767.34,这说明我们的预测结果是好还是坏呢?我们不妨用更高阶的曲线来拟合数据,看是不是能得到更好的效果。
fCurve3p =sp.polyfit(hours, hits,3) fCurve3 =sp.poly1d(fCurve3p)print"Error of Curve3 line:",error(fCurve3,hours,hits) fCurve10p =sp.polyfit(hours, hits,10) fCurve10 =sp.poly1d(fCurve10p)print"Error of Curve10 line:",error(fCurve10,hours,hits) fCurve50p =sp.polyfit(hours, hits,50) fCurve50 =sp.poly1d(fCurve50p)print"Error of Curve50 line:",error(fCurve50,hours,hits)
其逼近误差为:
Error of straight line: 317389767.34
Error of Curve2 line: 179983507.878
Error of Curve3 line: 139350144.032
Error of Curve10 line: 121942326.364
Error of Curve50 line: 109504587.153
这里我们进一步看一下实验结果,看看我们的预测曲线是不是很好的拟合数据了呢?尤其是看一下多项式的阶数从10到50的过程中,模型与数据贴合太紧,这样模型不但是去拟合数据背后的模型,还去拟合了噪声数据,导致曲线震荡剧烈,这种现象叫做过拟合。
小结
从上面的小实验中,我们可以看出,如果是直线拟合的话就太简单了,但多项式的阶数从10到50的拟合又太过了,那么是不是2、3阶的多项式就是最好的答案呢?但我们同时发现,如果我们以它们作为预测的话,那它们又会无限制增长下去。所以,我们最后反省一下,看来我们还是没有真正地理解数据。
衡量性能指标
作为一个ML的初学者,在衡量学习器性能方面会遇到很多问题或错误。如果是拿你的训练数据来进行测试的话,这可能是一个很简单的问题;而当你遇到的不平衡的训练数据时,数据就决定了预测的成功与否。
回看数据
我们再仔细分析一下数据,看一下再week3到week4之间,好像是有一个明显的拐点,所以我们把week3.5之后的数据分离出来,训练一条新的曲线。
inflection=3.5*7*24#the time of week3.5is an inflectiontime1= hours[:inflection]value1= hits[:inflection]time2= hours[inflection:]value2= hits[inflection:]fStraight1p= sp.polyfit(time1,value1,1)fStraight1= sp.poly1d(fStraight1p)fStraight2p= sp.polyfit(time2,value2,1)fStraight2= sp.poly1d(fStraight2p)
显然,这两条直线更好的描述了数据的特征,虽然其逼近误差还是比那些高阶多项式曲线的误差要大,但是这种方式的拟合可以更好的获取数据的发展趋势。相对于高阶多项式曲线的过拟合现象,对于低阶的曲线,由于没有很好的描述数据,而导致欠拟合的情形。所以为了更好的描述数据特征,使用2阶曲线来拟合数据,来避免过拟合和欠拟合现象的发生。
训练与测试
我们训练得到了一个模型,这里就是我们拟合的两个曲线。为了验证我们训练的模型是否准确,我们可以在最初训练时将一部分训练数据拿出来,当做测试数据来使用,而不仅仅通过逼近误差来判别模型好坏。
总结
这一小节作为机器学习小实验的引入,主要传递两点意思:
1、要训练一个学习器,必须理解和提炼数据,将注意力从算法转移到数据上
2、学习如何进行机器学习实验,不要混淆训练和测试数据
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20