
大数据时代下数据分析的变化
( 一) 分析思路
大数据时代的分析常常是直接计算现象之间的相依性。传统的统计分析过程是 “定性 - 定量 - 再定性”,第一个定性是为定量分析找准方向,主要靠经验判断,一般针对数据短缺的情况下比较重要。现在大数据时代,可以直接通过数据分析做出判断,所要做的是直接从 “定量的回应”中找出数量特征和数量关系,然后得出可以作为判断或决策依据的结论。因此大数据时代统计分析的过程可以简化为“定量 - 定性”。在实证分析上,传统思路通常是 “假设 - 验证”,先根据最终的研究目的提出假设性意见,然后收集分析数据,进而验证假设的成立与否。这种实证分析容易受到数据的缺失、假设的局限性以及指标选择的不当等的影响,得不到正确的结论。尤其是在假设本身的非科学性、非客观性、非合理性的情况下,得出的结论更是毫无用处,甚至歪曲事实本身。在现在的大数据时代,可以从中寻找关系、发现规律而不受任何假设的限制,然后得出结论,分析的思路可以概括为 “发现 - 总结”。
( 二) 研究对象的变化
首先,从数据来源上看,传统的统计抽样调查方法有一些不足: 抽样框不稳定,随机取样困难; 事先设定调查目的会限制调查的内容和范围; 样本量有限,抽样结果经不起细分; 纠偏成本高,可塑性弱。而在大数据时代,更多的是将总体直接作为研究对象,摒弃了抽样样本的研究,传统统计抽样调查方法的不足可以在大数据时代得到改进。其次,对于数据类型而言,传统数据通常是结构型的,即定量数据加上少量的定性数据,格式化,有标准,可通过常规的统计指标和统计图来表示。而大数据则注重非结构性数据或者半结构、异结构数据,多样化、无标准,很难通过传统的统计指标或统计图表加以表现。
( 三) 假设检验的变化
传统的统计研究,通常是根据内容提出假设意见,然后根据最初设定的理论模型来检验验证假设的真实效用性。但对于大数据时代而言,信息资源充足,可以采用人工智能对数据信息进行挖掘开发,需要验证的假设比传统经济学研究多出很多,不在一个数量级上。传统的假设验证分析是无法满足大数据时代的需求的。
( 四) 分析关系的变化
预先假设事物之间的因果联系,再设定理论模型验证预先的假设,这是传统统计分析工作的一般工作模式。在大数据时代,由于数据规模的庞大,数据结构的复杂多样等,使预设的因果关系会相对复杂很多,给分析工作带来很大的不便。预示,大数据时代的数据分析便侧重于关注事物之间的相关联性,而非因果关系。在小数据时代,计算机存储和计算能力不足,导致大部分相关分析限于线性关系。大数据时代,现象的关系相对更复杂,不仅可能是线性关系,更有可能是非线性关系。这种非线性关系除了可能是非线性的函数关系外,更一般的情况不清楚关系的具体形式,只知道现象之间的相依的程度。由于在大数据时代数据结构和数据关系错综复杂,很难在变量间确定的函数形式并在此基础上探讨因果关系,因此大数据时代一般不做原因分析。
( 五) 建模思想的变化
传统的统计往往采用模型来进行研究,但是模型不是万能的,各个模型并不是完全一样,而是各有所长,同样也有其自身的局限性。因此传统的统计研究所得出的结论只能表示所用模型的结论,却不具有普适性。此外,在研究同一问题时,即使开始设定的理论模型是一样的,但不同的研究者在研究时所选择的变量、方法等方面的不同,也会导致研究结论的不同。在借助分布式处理、人工智能和云计算等现代信息技术的大数据时代背景下,可以采用数以千计的模型来进行研究。在 2009 年美国甲型H1N1 流感爆发之际,谷歌公司对其进行了大胆的预测,将上千万条美国人的高频检索词和疾控中心在 2003 ~ 2008 年中间的 ( 季节性) 流感时期进行了大量比较,总共处理了将近 5 亿的数字模型,其结果与官方数据相关性达到了 97% ,比官方时间省事半个月左右,为相关部门积极解决问题争取了弥足珍贵的时间。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05