大数据时代下数据分析的变化
( 一) 分析思路
大数据时代的分析常常是直接计算现象之间的相依性。传统的统计分析过程是 “定性 - 定量 - 再定性”,第一个定性是为定量分析找准方向,主要靠经验判断,一般针对数据短缺的情况下比较重要。现在大数据时代,可以直接通过数据分析做出判断,所要做的是直接从 “定量的回应”中找出数量特征和数量关系,然后得出可以作为判断或决策依据的结论。因此大数据时代统计分析的过程可以简化为“定量 - 定性”。在实证分析上,传统思路通常是 “假设 - 验证”,先根据最终的研究目的提出假设性意见,然后收集分析数据,进而验证假设的成立与否。这种实证分析容易受到数据的缺失、假设的局限性以及指标选择的不当等的影响,得不到正确的结论。尤其是在假设本身的非科学性、非客观性、非合理性的情况下,得出的结论更是毫无用处,甚至歪曲事实本身。在现在的大数据时代,可以从中寻找关系、发现规律而不受任何假设的限制,然后得出结论,分析的思路可以概括为 “发现 - 总结”。
( 二) 研究对象的变化
首先,从数据来源上看,传统的统计抽样调查方法有一些不足: 抽样框不稳定,随机取样困难; 事先设定调查目的会限制调查的内容和范围; 样本量有限,抽样结果经不起细分; 纠偏成本高,可塑性弱。而在大数据时代,更多的是将总体直接作为研究对象,摒弃了抽样样本的研究,传统统计抽样调查方法的不足可以在大数据时代得到改进。其次,对于数据类型而言,传统数据通常是结构型的,即定量数据加上少量的定性数据,格式化,有标准,可通过常规的统计指标和统计图来表示。而大数据则注重非结构性数据或者半结构、异结构数据,多样化、无标准,很难通过传统的统计指标或统计图表加以表现。
( 三) 假设检验的变化
传统的统计研究,通常是根据内容提出假设意见,然后根据最初设定的理论模型来检验验证假设的真实效用性。但对于大数据时代而言,信息资源充足,可以采用人工智能对数据信息进行挖掘开发,需要验证的假设比传统经济学研究多出很多,不在一个数量级上。传统的假设验证分析是无法满足大数据时代的需求的。
( 四) 分析关系的变化
预先假设事物之间的因果联系,再设定理论模型验证预先的假设,这是传统统计分析工作的一般工作模式。在大数据时代,由于数据规模的庞大,数据结构的复杂多样等,使预设的因果关系会相对复杂很多,给分析工作带来很大的不便。预示,大数据时代的数据分析便侧重于关注事物之间的相关联性,而非因果关系。在小数据时代,计算机存储和计算能力不足,导致大部分相关分析限于线性关系。大数据时代,现象的关系相对更复杂,不仅可能是线性关系,更有可能是非线性关系。这种非线性关系除了可能是非线性的函数关系外,更一般的情况不清楚关系的具体形式,只知道现象之间的相依的程度。由于在大数据时代数据结构和数据关系错综复杂,很难在变量间确定的函数形式并在此基础上探讨因果关系,因此大数据时代一般不做原因分析。
( 五) 建模思想的变化
传统的统计往往采用模型来进行研究,但是模型不是万能的,各个模型并不是完全一样,而是各有所长,同样也有其自身的局限性。因此传统的统计研究所得出的结论只能表示所用模型的结论,却不具有普适性。此外,在研究同一问题时,即使开始设定的理论模型是一样的,但不同的研究者在研究时所选择的变量、方法等方面的不同,也会导致研究结论的不同。在借助分布式处理、人工智能和云计算等现代信息技术的大数据时代背景下,可以采用数以千计的模型来进行研究。在 2009 年美国甲型H1N1 流感爆发之际,谷歌公司对其进行了大胆的预测,将上千万条美国人的高频检索词和疾控中心在 2003 ~ 2008 年中间的 ( 季节性) 流感时期进行了大量比较,总共处理了将近 5 亿的数字模型,其结果与官方数据相关性达到了 97% ,比官方时间省事半个月左右,为相关部门积极解决问题争取了弥足珍贵的时间。
数据分析咨询请扫描二维码
数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21