数据分析师的思维是如何练出来的
一名数据分析师的日常工作流是怎样的?
「数据分析师」这个职位,不同的公司,不同的行业,对于它的理解,以及它覆盖的工作范围不太一样。在有些传统行业,数据分析师工作重点是「做行业报告」等;在阿里巴巴等大型互联网公司,职位区分比较明确,数据分析师大部分时间只做产品和运营的分析工作,至于「基础数据处理」、「搭建数据产品」等等不涉及;在创业公司等相对小型公司,「数据分析师」要干的活可能要不仅仅是「产品和运营分析」,「基础数据采集和处理」,「数据产品搭建」都属于「数据分析师」的工作范围。
明确了数据分析师的工作范围,大概也就清楚了每天要做些什么,比如:
产品和运营的数据提供(正常分析师工作)
基础数据采集和处理(类似ETL工作)
数据产品的思考和搭建(类似数据产品经理工作)
数据价值的挖掘(类似数据挖掘工程师工作)
每日的工作流大概如下:
上午:日常项目的跟进,包括跟产品,运营,开发同学的沟通,这部分主要通过 Tower 和项目 PM 每天的邮件来互相协作和周知进度,当然,每个项目会有5-10分钟晨会;
每天不定时:日常运营需求的沟通比较多,这个主要是面对面,固化需求以后,邮件周知和记录;
下午晚点和晚上:数据平台自己的活,包括基础数据开发、数据产品搭建等等,就需要我们自己去安排时间完成。创业公司的一个优点就是人员相对少,大家互相协作都是面对面。
如何进行时间和日程管理?
数据分析师工作因为涉及内容比较多,所以经常会被产品/运营叫过去讨论某些项目,营销活动,等等,或者,被不同业务线主管召唤,讨论如何对某个业务线效果进行深入分析,所以,很多时候自己计划的「什么时间干什么事情」,基本得不到保障。就算得不到保障,每天早上过来以后,也要大概列清楚今天要干的几件事情,提醒自己去抽时间做完。每做完一件事情,就划掉。尽管有很多工具使用,比如,Trello,但是我还是喜欢一个笔记本,一支笔的方式。
时间是一个很奇怪的东西,只要你想要,它就来到你身边。比如,我想晚饭后来写采访的内容,就会拒绝同事邀请去做其他事情。我看过很多时间管理方面的书,也尝试过「番茄」等各种方法,最后发现,任何想基于「时间安排」去做「时间管理」的方法都很难有很好的效果,反而,基于「待做工作」来做时间管理,更合适。
比如,今天需要做三件事情,按照轻重缓急排序,1)2)3),然后就开始做,不想需要多少时间做完,尽量自己控制时间把它做完。很多人可能觉得这样很糟糕,万一做不完怎么办啊。其实,你自己尝试一下就行了,为什么自己会不得不、不情愿也要做、非要做完。因为,第二天工作又来了,今天做不完,明天这些工作还是你的。除了一浪一浪每天工作的累加的压迫,它更需要一个人的「自律」。如果有点时间就刷微信,微博,或者找同事闲扯几句,很容易打断工作流,所以最好是一气呵成。不管计划如何完美,如果没有「自律」,也没有结果。
数据分析师的思维是如何练出来的?
可能提到数据分析师这个职业,「思维」是被提到最多的一个词。或许这个跟数据分析师思考比较多,沟通过程中更理性,让大家得到的错觉。个人觉得,任何一个职业,任何一个人都应该有一套自己的思维体系和一个好的思维方式。数据分析师的思维仅仅是其中的一个不同的看世界的方式。比如,每个人的思维是一条道路,条条大道通罗马,虽然每个人看世界的方式不一样,但是可能得到的结果一样。
想知道数据分析师思维,首先要了解「思维」是什么,bing一下,得到「思维」的定义:
①思维与“感性认识”相对。指理性认识,即思想;或指理性认识的过程,即思考。是人脑对客观事物间接的和概括的反映。包括逻辑思维和形象思维,通常指逻辑思维。
②与“存在”相对。指意识、精神。
显然,定义①是我们这里想讨论的思维。这个定义也清楚的说明了思维是每个人看世界的方式。
数据分析师通过数据来认识产品/业务,所以,它确实有一套跟别人不一样的思维,即「类统计学的逻辑思维」。除了这个之外,其他基本跟其他同学一样。
从我打篮球、乒乓球的经历,加上5年数据分析师的体验来说,很难通过一些简单的训练就学会某种思维方式,主要还是要自己在工作过程中通过实际的案例多踏几个坑,多开拓眼界来学习。所谓「九折臂而成医」,大概如此。
在这里分享给大家我平时常用的方法:
-看书,看别人的总结。
学习大牛是如何认识世界,分析案例,比如《穷查理宝典》——查理芒格,《把时间当做朋友》——李笑来,《系统思维》——德内拉?梅多斯,等等,分析为什么这些作者的思维如此的独特?我和他们认识世界的方式为什么不一样?我们彼此的认识事物的方式哪个更好,哪个更接近真相?为什么他们看到的世界是这样,而我是这样?多问问为什么,多找差异,然后再去找其他的书看,一步步丰富自己。这些作者可能也没得到真相,而是他们可能距离真相近一点。
-学会举一反三。
做分析师,非常需要「举一反三」的能力。去食堂吃饭,看到排队的效率如此低,分析一下为啥效率这么低?我们的产品上某个地方是不是也有类似的效率问题?滴滴打车这种叫车模式,我们的产品可以用么?为什么不能用?反正,多问几个为什么,多举一反三,思考,思考。「对或者错」有些时候不重要,重要的是我们感知世界的能力在变化。
-研究别人家的产品和别人家的数据。
比如,我非常推荐新的分析师看各个公司的财报。为什么呢?一个大公司的财报如果能看懂了,基本就了解了一个公司的运作模式和重要产品,也明白了如何写一份报告。再者,研究别人家的产品,不管是工具类还是用户类,看看他们的交互,设计,体验上怎么会不一样,别人的用户数为什么是这个,而我们的是多少?
-关注「经济」和「社会」新闻,多串联起来看新闻。
北京大雨了,河北大雨了,南方干旱,南北方需要什么?我们的产品是否能提供这些东西?长征7号上天了,哪些东西可能会不一样?多把不同事物串联起来想,思考,分析。
总结一下,数据分析师要有一个「系统、整体和部分的思维」,也要有一个「事物类比思维」,更要对「事物敏感」,可以很迅速的把不同的事物串联起来(敏感),很快的抓到事物的本质特征(类似思维),然后局部整体的来分析和研究(系统思维)。
如何进行跨领域学习?
其实,数据分析师经常面临「跨领域」,只不过跨的大和小的区别。比如,我之前在阿里妈妈研究广告的竞价,来到空格研究共享经济、服务,也算是一个很大的跨领域。从「分析方法」和「研究产品」的角度来说,两者没有差别,但是研究的领域确实不一样了。「跨领域学习和交流」对于分析师来说还是比较重要的,毕竟,我们不能保证自己所做的东西都是拿手或者了解过的,很多业务和产品都是新产品,新业务,自己要保证快速的跟上。
跨领域学习其实没有那么难。很多事物都是相似的,比如,足球和桌上足球相似,足球和篮球在某些方面也相似,乒乓球和篮球,其实在练习方法上,技巧上也有一些共同的地方。分析师研究产品和业务也一样。如果学会了分析事物背后变化发展规律,也就不存在「跨不跨」领域学习的问题,比如,一个用户留存模型,即适合 Facebook 的研究,也适合 Uber 的研究,为什么呢?因为用户使用产品过程中,行为和体验过程是类似的。
大家可能都被教育过,「看事情要看本质,不要浮于表面」。这个对于分析师来说更重要。如果看懂了一个商业模式,比如「共享经济」的模式,不管它是滴滴,还是Airbnb,还是空格,基于「大众参与的闲置资源的使用权的让渡」特征是不会变的,唯一不同的是三种产品运营和用户体验上的差异。所以,推荐大家建立一套自己认识事物的思维模式。
就像一个 VC ,或者巴菲特,为什么他们可以投资不同的行业的公司和买不同的股票,为什么他们能看懂看准呢?因为他们各自都有一套认识世界和事物运作的思维模式,这套通用的模式会让他们在跨领域的投资中都能受益。
所以,大家不要局限于「怎么样跨领域学习,怎么样学习,学习些什么」,以为学了这么多肯定就无所不知,通行天下,但你看到的「星星」还是星星,「太阳」还是太阳,从没发现「太阳出来了,星星不见了;太阳下山了,月亮出来了」的天体运行规律。
归根结底,跨领域学习,要学一套「认识事物的思维模式」,而不是一点点具体的知识。推荐大家学习一下投资公司评估公司价值的一些原则和方法。还有,可以看看《易经》等从系统和整体上看待事物相关的书籍,锻炼自己系统思维和「凡事看本质的」能力。
数据分析的本质是什么?
查理芒格说过一句话:「不要做一个股票分析家,而是做一个商业分析家。」
对于数据分析来说,不管我们通过何种「分析方法」,「挖掘算法」,还是「数据可视化」,都是为了「分析和研究产品,以及使用产品的人」,而「产品和人」会给我们带来商业上的利益。做产品的目的是为了让别人使用,成立公司是为了获得商业的最大化利润。所以归根结底,数据分析的目的是「更好的了解使用产品的人的行为,体验和想法」,基于这些了解,「再做产品上的改变,获得商业的利益最大化」。
比如,很多互联网公司都要分析「用户行为路径」,为什么要分析这个呢?如果我们非常清楚的知道「用户怎么进来,去了哪里,哪里看的多,哪里看的少,从什么地方跳失」,我们就可以优化「产品的交互和设计」,让用户的体验更好,让用户点击「我们想让他们点击的东西」,从而实现我们产品上的某些成功。
为什么亚马逊会通过分析用户购买的东西,做「推荐算法」?如果可以找到每个人购买的东西,然后根据「概率」计算出TA可能潜在购买的商品,然后在用户经过的页面上放上「概率大」的这些商品,用户购买的概率就会高很多。 一切都为了更好的了解用户,服务用户,最终让用户买更多的东西(或者留存率高,可以卖更多广告)。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30