数据分析?这么简单的描述性统计先学了好吗
用户研究中数据分析的目的,常见有三种:
归纳分析、差异分析、关联分析
今天我们聊一下,在以归纳分析为目的的数据分析中,集中趋势和离散趋势怎么玩,形状测量将在《Part.5: 不用的数据类型对应的视觉化呈现》中一并聊。
如上图,归纳分析中对集中趋势和离散趋势的描述我们统称为描述性统计,这是统计分析中最基础的概念,也是日常的数据分析如问卷调研中用得最多的统计方法。本文中会另外聊到一个事情,就是在分析好集中趋势和离散趋势后,还需要判断这个结果在多大程度上可以相信,也就是置信区间的玩法。
集中趋势
集中趋势可以简单地理解成用单个数值来代表一组数据。最常见的三种集中趋势指标是平均数(mean)、中位数(median)和众数(mode)。
a.平均数
平均数大家都很熟悉,用户的平均年龄、平时在线时长、平均客单价等等,他是拿到用户数据后第一件要做的事情。大多数用户体验度量的平均值都能提供非常有用的信息,比如新版本上线后采用5分或7分量表获取用户的体验满意度,最简单的方法就是根据采集的数据计算出平均值,将平均值作为用户满意度结果进行报告。这份满意度报告展示的第一个数据就已经呈现了,读者对该次版本的满意度就有了初步的印象。
b.中位数(中数)
中位数,顾名思义,就是将数据从小到大或从大到小进行排序排序,然后取中间的数字作为这一列数据的中位数。如果正好样本量是偶数,那么就平均一下中间的两个数据得到中位数。
什么时候该用中位数而不是平均数来表示呢?如下表,一项可用性研究中12名参加者完成某任务的时间(秒)。
上图这组数据中,第12位参与者大大拉高了平均值,但是中位数不受其影响。所以一般情况下存在某些数据偏差太大的情况,中位数比平均数更适用。
c.众数
能用字面意思理解的概念都是好概念,众数也同样可以从字面理解,就是出现次数最多的那个数值。如1、2、2、3、6这组数据的众数为2。众数的使用场景比较少,但当一组数据包含的数值范围很小(如1-3分的主观评价量表,满意、一般、不满意)时,众数会更有价值。
一般收集到用户数据后,我们录入和分析工具使用最多的是excel和spss,数据量未超过一万条(样本量未超1万)可以直接在excel中进行计算,超过一万条后excel的处理速度会变慢,可以考虑spss或其他统计软件。
[excel 计算方法]
(1)平均数:可以用“=AVERAGE”函数计算
(2)中数:可以用“=MEDIAN”函数计算
(3)众数:可以用“=MODE”函数计算
离散趋势
实例:
新版本上线后针对操作简便性与账户安全性两个维度进行满意度的问卷调研。现选取10名核心用户分别在两个维度上进行满意度评分,结果如下表。
如上表,两组得分数据平均值均为5.5,但是操作简便性维度上,10名用户间的差异很大,而账户安全性维度上10名用户的差异很小。也就是说,在操作简便性上,其实只有一半用户表示最为满意,但另一半用户认为一般及不满意;在账户安全性维度上,所有用户都较满意,评价较统一。
平均数相同的两个维度,其实样本间差异非常大,这时候如果只用平均数来表示这次调研的整体表现,结果就会对读者产生误导,因为样本间的差异过大时将平均数作为产品的评判和改进依据是没有意义的,应该从离散的数据中找到数据背后的疑问点进行深入了解。
如果发现了样本背景有差异,则应该进一步分析,比如按照不同样本背景将用户进行分组,验证是否的确由于这个原因引起了整体数据的离散,然后再通过其他质性的方式深入了解样本背景与其数据表现的相关性或因果性。
从上面的事例中,我们发现:除了需要报告数据的集中趋势,数据的离散趋势即变异性也是必不可少的。
变异性描述统计显示的是数据的分散或离散程度。如上表中,不同用户对操作简便性满意度的评分差异很大,也就是说数据离散程度高、集中趋势低;不同用户对账户安全性满意度的评分差异较小,也就是说数据离散程度低、集中趋势高。
在实际的数据统计中,在99.9%的情况下,我们都无法像上述例子那样直接用肉眼判断数据的离散程度,需要借助几个数据指标来判断。表示离散趋势的常见指标为全距(range)、方差(variance)和标准差(standard deviation)。
a.全距
全距就是一组数据中最大值和最小值之间的距离。计算最大值和最小值的差距即发现极端值,所以查看全距大小是初步检验数据离散趋势的一个最快捷方法。
b.方差
方差说明的是一组数据中每个数据与平均数的离散程度。具体公式在此就不细述,因为感谢强大的excel公式,足以帮我们从繁复的公式中解放出来。具体操作详见下文[excel计算方法]部分。
c.标准差
标准差其实就是开方后的方差。标准差的原理和方差的原理是一样的,只是将方差开方后,它的单位与原始数据单位就一致了,所以业内普遍用标准差反映数据的离散程度。标准差越大就说明每个数据与平均值的差异很大,能够证明这组数据之间差异很大(离散程度高)。
[excel计算方法]
(1)全距:用“=MIN”函数得到最小值;用“=MAX”函数得到最大值;MAX-MIN得到的就是全距
(2)方差:用“=VAR”函数就可以得出方差
(3)标准差:用“=STAEV”函数就能得出标准差
置信区间
上述满意度的问卷中,考虑到成本和时间等各方面因素,只能搜集到200份有效问卷,如果老板对于得出的数据结果有质疑:200份够吗?可以代表总体的实际评分吗?这时候就可以潇洒地甩一个置信区间给他(老板我这么说你是不会介意 对吗,看了这里不要扣我绩效)。
置信区间是对总体样本实际平均值的估计。一般情况下是先自己设置好置信区间,再算出这个置信区间下真实的平均数范围是什么样。
如置信区间是95%,说明你得出的“真实的平均数范围”这一结论它的可信度在95%,相应的错误概率(也就是α系数,α系数在计算操作的时候会用到)就是5%。
我们通常选用的置信区间有99%、95%和90%。如果你需要估值的置信区间有更大的把握,就选择99%的置信区间;如果对需要估值的置信区间不是很有把握,就选择90%的置信区间。
实例:
如果我们需要根据上述10名用户对账户安全性的满意度评分来估计总样本的实际满意度,我们不可能让所有用户都来填写问卷,但是你可以根据获得的10份样本估计满意度可能的范围(这里只是用虚拟的数据举例,实际的问卷调研样本数量要求会根据具体情况而定)。
在上表中,得到平均数为5.5,90%置信区间下的估值结果为0.15(0.145269539,取小数点后两位),所以可以将结果表述为这个平均数的90%置信区间是5.5±0.15。也就是说,你有90%的把握判断出所有用户对账户安全性的满意度在5.35至5.65之间(置信区间非常有用,可以当作汇报平均值的常规项)。数据分析培训
[excel计算方法]
在excel中用“CONFIDENCE”函数“=CONFIDENCE(α系数、标准差、样本量)”就能快速计算置信区间。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10