数值变量正态性检验常用方法的对比及SPSS&R实现
一、方法概述
正态分布又叫高斯分布,“正态”即“正常的状态”,本意是说如果在观察或试验中不出现重大的失误,则结果应遵循这种模式的分布——尽管随着人们实践经验的积累发现事实并非如此。正态分布之所以得到普遍重视,除了它可以用来刻画数值变量的分布特征外,另一个重要原因要归功于Fisher及其同时代的若干杰出学者。他们对正态总体下一系列重要的统计量建立了形式简约且在计算上可行的小样本理论,为统计推断提供了极大的方便,而在非正态的情况下则没有可比拟的结果[1,2]。基于此,人们在实际统计分析时,总是乐于采用正态假定。人们在对一个数值变量进行分析之前,可以参照既往基于大样本所推测的变量分布形式,确定正态性假定的合理性。然而,有时既往文献中没有基于大样本的变量分布形式定论,致使研究者对正态性假定是否合理无充分的把握。这时就需要使用实际的观测数据,实施正态性检验。
二、软件实现
统计分析包括统计描述和统计推断[1],正态性的分析主要包括统计图绘制,及统计指标的计算与检验两种方法。利用统计图可以直观地呈现变量的分布,同时还可以呈现出经验分布和理论分布的差距。峰度、偏度就是两个常用的正态性描述统计指标,通过构建检验统计量还能实现正态性检验,Shapiro-Wilk检验、Kolmogorov-Smirnov、偏度峰度联合检验(Jarque–Bera检验)、GramerVon-Mises检验等均是通过构建检验统计量对样本进行正态性检验。具体见表1。
如表1所示,直方图、茎叶图和箱式图为主观的基于统计图的正态性描述方法,而统计描述指标峰度检验和偏度检验可以被认为是一种客观的数值计算的正态性检验方法。基于统计推断的概率图、P-P图、Q-Q图为客观的图表判断的正态性检验方法,而基于数值计算的常用的统计软件,如SAS,SPSS,R,STATA均有相关命令或者过程步基于样本数据对总体的正态性进行检验,表2给出了常见的四种统计软件实现上述正态性检验方法的命令语句,以及各种方法使用过程中对样本量的要求。
三、方法选择流程图
下图是正态性检验的方法选择的流程图,大家可根据样本数据情况选择不同的方法。
四、SPSS中正态性检验操作演示
下面我们来看一组数据,并检验“期初平均分” 数据是否呈正态分布(此数据已在SPSS里输入好):
在SPSS里执行“分析—>描述统计—>频数统计表”(菜单见下图,英文版的可以找到相应位置),然后弹出左边的对话框,变量选择左边的“期初平均分”,再点下面的“图表”按钮,弹出图中右边的对话框,选择“直方图”,并选中“包括正态曲线”。
设置完后点“确定”,就后会出来一系列结果,包括2个表格和一个图,我们先来看看最下面的图,见下图,
上图中横坐标为期初平均分,纵坐标为分数出现的频数。从图中可以看出根据直方图绘出的曲线是很像正态分布曲线。如何证明这些数据符合正态分布呢,光看曲线还不够,还需要检验:
检验方法一:看偏度系数和峰度系数
我们把SPSS结果最上面的一个表格拿出来看看(见下图):
偏度系数Skewness=-0.333;峰度系数Kurtosis=0.886;两个系数都小于1,可认为近似于正态分布。
检验方法二:单个样本K-S检验
在SPSS里执行“分析—>非参数检验—>单个样本K-S检验,弹出对话框,检验变量选择“期初平均分”,检验分布选择“正态分布”,然后点“确定”。
检验结果为:
从结果可以看出,K-S检验中,Z值为0.493,P值(sig 2-tailed)=0.968>0.05,因此数据呈近似正态分布
检验方法三:Q-Q图检验
在SPSS里执行“图表—>Q-Q图”,弹出对话框,见下图:
变量选择“期初平均分”,检验分布选择“正态”,其他选择默认,然后点“确定”,最后可以得到Q-Q图检验结果,结果很多,我们只需要看最后一个图,见下图。
QQ Plot中,各点近似围绕着直线,说明数据呈近似正态分布。
五、R:正态性检验
(1)QQ概率图
功能和原理:检验样本的概率分布是否服从某种理论分布。PP概率图的原理是检验实际累积概率分布与理论累积概率分布是否吻合,若吻合,则散点应围绕 在一条直线周围,或者实际概率与理论概率之差分布在对称于以0为水平轴的带内。QQ概率图的原理是检验实际分位数与理论分位数之差分布是否吻合,若吻合,则散点应围绕在一条直线周围,或者实际分位数与理论分位数之差分布在对称于以0为水平轴的带内。QQ概率图以样本的分位数为横轴,以指定理论分布的分位数为纵轴绘制散点图。
> library(DAAG)
> data(possum)
> attach(possum)
The following object(s) are masked from 'possum (position 12)':
age, belly, case, chest, earconch, eye, footlgth, hdlngth, Pop,
sex, site, skullw, taill, totlngth
> fpossum <- possum[possum$sex=="f",]
> mean = mean(totlngth)
> sd = sd(totlngth)
> x <- sort(totlngth)
> n <- length(x)
> y <- (1:n)/n
>
> plot(x,y,
+ type = 's',
+ main = "Empirical CDF of ")
> curve(pnorm(x, mean, sd),
+ col = 'red',
+ lwd = 2,
+ add = T)
图形表示,数据与正态性略有差异,特别是中部区域。
(2)与正态密度函数直接比较
> library(DAAG)
> data(possum)
> attach(possum)
The following object(s) are masked from 'possum (position 13)':age, belly, case, chest, earconch, eye, footlgth, hdlngth, Pop,
sex, site, skullw, taill, totlngth
> fpossum <- possum[possum$sex=="f",]
> dens <- density(totlngth)
> xlim <- range(dens$x)
> ylim <- range(dens$y)
> mean = mean(totlngth)
> sd = sd(totlngth)
> par(mfrow=c(1,2))
>
> hist(totlngth,
+ breaks=72.5+(0:5)*5,
+ xlim = xlim ,
+ ylim = ylim ,
+ probability = T ,
+ xlab = "total length",
+ main = "A:Breaks at 72.5...")
> lines(dens,
+ col = par('fg'),
+ lty = 2)
> curve( dnorm(x, mean, sd),
+ col = 'red',
+ add = T)
>
> hist(totlngth,
+ breaks = 75 + (0:5) * 5 ,
+ xlim = xlim,
+ ylim = ylim,
+ probability = T,
+ xlab="total length",
+ main = "B:Breaks at 75")
> lines(dens,
+ col = par('fg'),
+ lty = 2)
> curve(dnorm(x,mean,sd),
+ col = 'red',
+ add = T)
看图直接看和正态密度函数的差异度。
(3)使用经验分布函数,直接比较数据的经验分布函数和正态分布的分布函数对比。
> library(DAAG)
> data(possum)
> attach(possum)
The following object(s) are masked from 'possum (position 14)':age, belly, case, chest, earconch, eye, footlgth, hdlngth, Pop,
sex, site, skullw, taill, totlngth
> fpossum <- possum[possum$sex=="f",]
> mean = mean(totlngth)
> sd = sd(totlngth)
> x <- sort(totlngth)
> n <- length(x)
> y <- (1:n)/n
>
> plot(x,y,
+ type = 's',
+ main = "Empirical CDF of ")
> curve(pnorm(x, mean, sd),
+ col = 'red',
+ lwd = 2,
+ add = T)
总体来说,数据并不完全服从正态分布,需要做进一步检验,看和正态分布的差距多大,是否在接受范围之内?
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16