大数据时代的数据交易规则的法律思考
一、 大数据国家战略
现在随着全球数字化、网络宽带化、互联网应用于各行各业,一个大规模的产生、分享和应用数据的大数据时代已经到来。大数据将是下一个创新、竞争、生产力提高的前沿。大国均将大数据提升到国家战略的高度,如美国,2012年3月29日,美国奥巴马政府推出“大数据研究与开发计划”,提出“通过收集、处理庞大而复杂的数据信息,从中获得知识和洞见,提升能力,加快科学、工程领域的创新步伐,强化美国的国土安全,转变教育和学习模式”;英国,英国在大数据方面的战略有开放有关交通运输、天气和健康方面的核心公共数据库,并在五年内投资1000万英镑建立世界上首个“开放数据研究所”等;法国,法国政府在其发布的《数字化路线图》中表示,将大力支持“大数据”在内的战略性高新技术,通过发展创新性解决方案,并将其用于实践,来促进法国在大数据领域的发展等。
在我国,2015年5月8日总理亲自批示成立贵阳大数据交易所,贵阳成为全国第一家大数据交易所。交易所通过自主开发的电子交易系统面向全球提供7x24 小时全天候数据交易服务,并提供完善的数据确权、数据定价、数据指数开发、数据交易、结算、交付、安全保障、数据资产管理和融资等综合配套服务;2015年7月17日,由上海市经济和信息化委员会指导,上海市云计算产业促进中心主办,新炬网络、51CTO联合承办的首届“中国数据资产管理峰会”。会议中,上海市经济和信息化委员会发布《上海金融行业数据中心安全可控白皮书》,会议围绕数据资产管理、大数据变现、数据治理等热点议题进行,同时也关注在数据收集、运用及交易中,如何确保个人的隐私受到保护、企业的商业秘密不受侵犯、国家的信息安全等问题等。
二、大数据时代带来的法律问题
大数据蕴藏着巨大的潜力和能量,因海量数据的产生、获取、挖掘及整合,展现出巨大的商业价值,且重构很多行业的商业思维和商业模式。在先行者深谙“数据即资产”的道理,并已运用到各行时,大数据时代已并非我们所能选择,它已经到来。
如何给大数据制定规则成为非常现实的问题,即如何评估数据的价值、如何保护数据安全、现代企业如何利用大数据创新转型、以及如何打破数据垄断、个体如何从大数据中获益以及如何保护个体隐私、以及如何实现数据的快速有效交易、如何发挥数据交易所的作用等留下太多的法律空白。本文试图通过数据交易所平台来初步探讨,大数据时代的数据交易规则。
三、 数据交易规则初探
01 政府主导下的数据安全
大数据为国家战略,理应由国家进行主导,而不应交由市场或地方政府主导。国家应及时对大数据的交易规则、数据安全、数据运用、数据共享、个体保护、对外数据交流以及数据管控等制定相应的法律法规。然后随着大数据发展再逐步进行修订,虽然法律具有一定的滞后性,但对于已产生多时的事务,不应任由其发展,可先由部委制定规章制度,待成熟时再上升到法律。
大数据交易可由相应的归口部门进行联合管理,如科技部、公安部、商务部等,但最终是否可形成类似统一由国土安全部对数据进行管理或由其进行过滤后,再商业化运作。同时,加强对大数据相关的知识的教育、培训及宣传工作,以及开始着手各部门的衔接工作。政府应邀请法律界包括法学专家、学者教授及法学院,法院、律协、律师、公检等以及各行业协会代表参与到大数据时代数据交易规则的制定之中,对未来数据时代的交易规则、数据所有权、个体与集合数据的区分及维权、数据安全以及可能产生的纠纷预测等进行相关的研讨。
对于最可能先发生的数据安全问题,可从目前能掌握的如互联网公司非法获取、企业私下交易或共享、政府监控、黑客、用户保护意识欠缺、企业利用格式合同或强势地位收集、企业不重视数据保护或数据保护成本高、企业破产后的数据保护失控、盲目炒作大数据导致管理混乱等方面分别制定相关规定进行相应的保护和约束。
02 数据交易市场的建立及统一
各地数据交易市场相续建立,有地方政府主导的,有地方政府和企业主导等,但没有形成统一的数据交易市场,各数据交易市场各自为政,没有形成统一的交易规则、交易标准、交易定义,没有完善的数据登记,信息披露制度,没有关于国际间数据交流的相关规则等。可以说,目前数据交易市场还仅停留在撮合交易的阶段,或混乱的状态,未实质发挥其作用,未对未来做好充分的准备,任重而道远。
未来数据交易市场应是在国家主导下的统一的交易平台、统一的交易规则,并建立国家资质的数据评估机构,部分职能可交由之后可能产生的行业协会履行,国家再对各行业协会间的数据交流进行必要的监管,建议不妨参照证券交易所的相关经验。
03 企业在规范下进行数据交易
企业是大数据时代最大的获益者,也是受大数据冲击最大者。谁掌握更多的数据谁就掌握未来,而大数据之后的人工智能,也是企业能否引领未来的标杆。但企业是趋利的,而利益是双刃剑,企业在利益确实需要法律和制度的约束。应防止企业在收集、运用、共享数据时对权利的过度滥用,以及防止企业利用法律和制度的空白肆意侵犯个体或国家的隐私及安全,应将国家安全及个体隐私放在非常高的地位,并将其与企业信用进行挂钩,让法律和市场决定企业在大数据时代的生存,以倒逼企业对数据安全的重视。
04 个体对数据交易的适度参与
大数据时代的未来可能超过我们的想象,也可能在科幻电影里已经预言过。通过大数据的收集及分析,所有的痕迹将形成数据。这已经是非可以选择的时代,但可以选择的是如何主动参与到大数据时代中。如某政府官员提出的“数据银行”的概念,数据有价值,个体可主动选择是否对自己数据进行开放以及交易等主动参与的理念。
但作为在大数据面前相对弱势的个体而言,应更多关注数据安全,未来所有个体的资讯将数字化。个体的消费习惯、生活习惯、个人财产、个体特征等个体所有的隐私将无隐私可言。如何掌握数据安全的知识、维护个体的权利、保护个体隐私等将成为个体、企业与国家间进行博弈的新的场所。个体应不惧怕未来,拥抱未来,思索未来,其实大数据时代已经来到。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20