大数据和智能电网的关系
大数据技术在智能电网中具有广阔的应用前景,报告从负荷预测、源网荷协同、网架规划三个方面进行论述。
1、负荷波动及新能源出力预测
负荷预测作为电网电量管理系统的重要组成部分,其预测误差的大小直接影响电网运行的安全性及可靠性,较大的预测误差会给电网运行带来较高的风险。现阶段负荷预测主要是通过负荷历史数据,利用相似日或者其他算法预测负荷的大小,短期预测精度较高,中长期精度较差。随着电网采集数据范围增加,利用大数据技术可以将气象信息、用户作息规律、宏观经济指标等不同种类的数据,通过抽象的量化指标表征与负荷之间的关系,实现对负荷变化趋势更为精确的感知,提高预测精度。
分布式发电的不断接入,特别是新能源渗透率的不断增加,打破了原来电网运行管理的模式,不但需要考虑负荷侧的波动,还要计及新能源出力的间歇性。在我国,新能源接入主要受制于两个因素:(1)新能源大多分布在电网末端远离负荷中心,网架结构较为脆弱,从而造成电网接纳能力较弱;(2)新能源预测误差较大,目前风电出力预测日前和实时的误差分别为20%、5%左右,这样就会给电网调度带来较大的挑战。由于新能源较大的预测误差,往往需要在大型新能源基地周边建立配套的大型常规能源作为旋转备用,以弥补新能源预测精度方面的不足。作为备用的常规电源,由于担负着较重的旋转备用,长期不能工作在最佳运行点,将造成其发电效率低以及能源的浪费。利用大数据技术,可以有效提高新能源出力的预测精度,如丹麦的维斯塔斯风力技术集团,在风电出力预测时采用了IBM的大数据解决方案,在风电出力预测时加入了地理位置、气象报告、潮汐相位、卫星图像等结构化及非结构化的海量数据,从而优化了风力涡轮机布局,提高风电发电及预测效率,获得了较为可观的经济效益。
2、源网荷协同调度
利用大数据技术可以有效降低新能源预测误差,但这对于新能源出力固有的波动性,传统的调度方法通过增加系统的旋转备用来解决。在电力市场不断完善的背景下,可以不通过调节常规电源的出力,而是利用市场手段,使得一部分用户主动削减或者增加一部分负荷去平衡发电侧出力的变化,即通过需求侧管理实现系统电量平衡。若要达到网源荷协调优化调度需要大量的辅助信息,如新能源出力波动大小、电网线路输送能力、负荷削减电量的范围、实时电价等,其中每个因素又受很多条件的影响,因此是一个非常复杂的电力交易过程,此时必须利用大数据技术发掘数据内部之间的联系,从而制定出最佳调度方案。智能电网和传统电网最大的区别在于源网荷三者之间信息流动的双向性,三者之间信息在一个框架内可以顺畅的进行交互,极大地提升电网运行的经济性、可靠性。
3、网架发展规划
中投顾问发布的《“十三五”数据中国建设下智能电网产业投资分析及前景预测报告》指出,电网已经从传统电网发展到智能电网,随之将会成为能源互联网的一部分,从而使得电网与整个能源网联系的更为紧密。电转气技术的提出,为新能源接入提供了新的思路,试图将不宜存储的电能转化为便于存储的天然气,但由于转化效率较低,尚属于技术论证阶段。冷热气三联技术实现了能源的阶梯利用,能源利用效率高、环境污染小、经济效益好。电动汽车的兴起将会显著提高能源末端电力消费的占比,充换电站将会像加油站一样分布在城市的每个角落。传统的电网规划数据来源渠道不足,数据分析挖掘能力欠缺,因此造成规划过程中面临着众多不确定性因素的现象,特别是现在新技术不断涌现,能源结构不断发生变革,使得传统的电网规划方法往往与实际需求差别较大。电网规划的过程中,需要利用大数据技术综合考虑多种因素如分布式能源的接入、电动汽车的增长趋势、电力市场环境下为用户提供个性化用电服务等,多类型、海量数据的引入,可以有效减少电网规划过程中的不确定性,使得整个规划的过程更加合理、有序。
数据分析咨询请扫描二维码
CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16在现代企业中,数据分析师扮演着至关重要的角色。他们不仅负责处理和分析大量的数据,还需要将这些分析结果转化为切实可行的商业 ...
2024-12-16在当今的大数据时代,数据分析已经成为推动企业战略的重要组成部分。无论是金融、医疗、零售,还是制造业,各个行业对数据分析的 ...
2024-12-16在当今这个以数据为驱动力的时代,数据分析领域正在迅速扩展与发展。随着大数据、人工智能和机器学习技术的不断进步,数据分析已 ...
2024-12-16在信息爆炸和数据驱动的时代,数据分析专业是否值得一选成为许多人思考的议题。无论是刚刚迈入大学校门的新生,还是考虑职业转型 ...
2024-12-16适合数据分析专业学生的实习岗位有很多,以下是一些推荐: 阿里巴巴数据分析岗位实习:适合经济、统计学、数学及计算机专业的 ...
2024-12-16在数据科学领域,探索实习机会是一个理想的学习和成长方式。实习不仅可以提供宝贵的实践经验,还能帮助学生发展关键的数据分析技 ...
2024-12-16在当今信息驱动的时代,数据分析不仅成为了企业决策的重要一环,还催生了各种职业机会。从技术到业务,数据分析专业的就业岗位种 ...
2024-12-16在现代企业中,数据分析师被誉为“数据探险家”,他们通过揭示隐藏在数据背后的故事,帮助公司优化业务策略和做出明智的决策。然 ...
2024-12-16在大数据崛起的时代,数据分析师被誉为企业的“幕后英雄”。他们通过解读数据,揭示隐藏的真相,为企业战略提供重要的指导。这份 ...
2024-12-16在这个信息大爆炸的时代,数据分析师成为了企业中的“福尔摩斯”,他们能够从庞杂的数据中提取关键洞察,为业务发展提供坚实支持 ...
2024-12-16在这个数据为王的现代社会,数据分析师如同企业的导航员,洞悉数据背后所隐藏的商业机会和战略优势。然而,成为一名优秀的数据分 ...
2024-12-16