传统行业如何拥抱大数据变革
大数据会怎样改变一个传统行业的运营模式呢?
在前不久举行的2016英特尔中国行业峰会上,英特尔公司销售市场部副总裁兼行业解决方案集团全球总经理香农·波林分享了一个传统农业是如何与大数据结合的故事。
他以美国一家非常大的农机公司为例。这家生产拖拉机等农业机械设备的传统行业公司也要拥抱新趋势:他们要把依赖手工和人工劳动力投入的行业转变成依靠技术发展的行业。
他们是怎么做呢?他们在拖拉机的维护上就作了一些新的技术尝试,比如说安装芯片收集GPS信息,除了采集拖拉机本身的数据,还通过拖拉机在农田中的耕作收集农田的情况,比如土壤的湿度、温度、构成等。然后,他们告诉农民,根据收集到的土壤信息,应该做什么样的农业生产。
现在这家农机公司不仅卖给农民农业机械,卖的是更多、更高端的服务,而这种服务是基于技术收集的数据基础。
“这就是创新和变革的力量。”波林说。
实际上,整个行业环境的竞争格局都在发生变化。行业内生性变革和跨界竞争交织在一起,不断冲击着传统行业的固有业务模式和竞争格局。在2016英特尔中国行业峰会上,来自金融、能源、医疗、交通、零售、教育等行业的专家、企业高管、英特尔业务负责人以及合作伙伴们,一起分享了数字经济如何挑战传统行业并推动新兴行业的发展。
在零售业,从云到端的技术和应用为消费者打造了完美的购物体验,打通零售全渠道营销,助用户更加精准、快速地响应市场变化,捕获无限商机;在医疗行业,创新技术正在帮助用户提升运营效率、完善就医体验,让高质量、个性化、便捷的医疗服务触手可及;而在传统金融业,银行正在从古老的限定位置、时间的线下网点服务,转向即时可用、随时随地的个性化金融服务,这使得用户可以更加灵活地应对不断涌现的金融业务创新和技术挑战。
各行各业都面临着相同的答卷:在数字时代经济大潮涌动的时候,巨大的市场需求和科技创新驱动着商业变革。
前段时间,波林与一些金融行业,特别是银行的客户进行交流。他们告诉波林,现在银行业处在巨大变化的过程中:银行业过去的对手比较传统,在未来的几年里,一些新的业务模式将给银行业带来更强劲的挑战,比如说互联网金融。如果放在20年甚至10前,这些新兴的公司不可能成为传统公司的竞争对手。
据波林了解,银行业正在努力实现自身的变革,让自己能更好地成为颠覆的力量,而不是成为被颠覆的对象。而这一切才刚刚开始。
在过去10~15年,全世界都经历着计算带来商业模式的变革。以云计算、大数据和万物智能互联等为代表的新兴技术正在为全球范围内的商业和企业带来变革。以Airbnb为例,它用6年时间发展到200万间客房,而著名的酒店连锁企业美国万豪酒店集团用了90年的时间才做到100万间客房的规模。
“云在颠覆我们的传统业务。”英特尔公司数据中心事业部副总裁及云服务平台事业部总经理芮洁安妮·斯基尔伦女士说。在她看来,云实际上是现在业界最大的颠覆者,它是一个总值达到2000亿美元的行业,其中一半是软件及服务,以网络为基础面向普通消费者的服务,同时也会对传统业务在向数字化进行转型的过程中起到巨大的推动作用。
云意味着很多全新的可能。斯基尔伦每一次来到中国都会和很多新公司交流,它们是在新趋势下应运而生的新企业,他们每天做的工作是改变消费者的生活方式,社交、娱乐、即时沟通工具,都是基于公有云计算的基础上。
以美国的UPS公司为例,每天运输的包裹数量达到2000万个,这些邮包如何准确送到用户手中?UPS用人工智能进行他们的业务。他们打造了一个系统,使用非常先进的远程信息系统GPS路由以及卡车司机过去的驾驶数据分析,综合在一起,这个系统能够帮助司机实现最优的路线规划。实际上, 一天少开一英里可能不算什么,关键这个数据以年来计算,每年就是8500万英里,换而言之,意味着相应量的汽油的节约。
云会不断扩展,每秒钟都会有新的数据产生,每12个月产生的数据量要翻番。斯基尔伦说,我们在创造数据时,也要存储数据,但是在使用数据方面做得并不是很好。斯基尔伦和同事们做了一些研究,在现有捕捉的数据中,只有5%的数据实际上真正得到了使用,95%的数据被存储了,然后就再也不去碰了。
必须承认的一个事实是:未来的世界是属于新型创新的公司。
波林认为,很多企业在创新中被颠覆,在未来几年,40%的企业将会以某种方式受冲击:他们可能被收购,也可能因为商业模式不再奏效,完全没有业务。也许还有一些企业因为能够创新,带来整个行业同类公司的变化。
在未来的竞争中,除了技术,还必须能够打造一个吸引创新人才的职场。“如果做不到这一点,5~10年后这家公司就会死去。”
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21