
模型建立——时间序列 eviews协整检验(EG两步法(Engle-Granger))
1.首先,需要两列时间序列数据,将他们命名为future4,future5,存入eviews。
2.对两组数据取对数,得新的数据:P4=log(future4),P5=log(future5)。可在eviews中点击Genr输入p4=log(future4)可自动产生对数数列。
为何取对数?:可以部分消除异方差的问题,另外,其差分可以表示发展速度的对数,也可以消除序列相关的问题.有时候要看经济意义!取对数也可减少数据的波动,在高频数据中尤是。变量取对数是为了消除异方差,系数也是弹性系数,主要是为了消除金融时间序列的异方差现象,可以将可能的非线性关系转化为线性关系,减少变量的极端值、非正态分布以及异方差性。
针对上面提到的非线性关系转化为线性关系,做进一步的解释:经济序列通常做对数化处理,因为log有很多优良特性。如取对数,很容易操作,正如上面所说,输入log(x)就可以产生原数列相应的对数数列。还有一些关系式如log(a*b)=log(a)+log(b),log(a^2)=2*log(a),这种特性可以很容易的把函数之间的关系线性化。加上log,常可以使得经济数列变得更容易处理。)
3.对两个时间序列分别做ADF检验。
1.eviews中选取时间序列P4,右键=》open。在新的窗口中点击 view=》unit root test。
2.ADF检验需要对3个模型依次检验,所以在unit root test窗口中先①选:level、trend and
模型建立——时间序列 eviews协整检验(EG两步法(Engle-Granger))
intercept。然后确认=》得到
第一行是所得t值,下面3行是临界值。t=-2.0665>临界值,因此非平稳。因此要继续检验②:level、intercept,假设还是非平稳。继续检验③:level none。假设还是非平稳,则做一阶差分,即将level换成1st difference,将之前①②③从新来过,一旦t<临界值就可以停止了。若level时,t值均大于临界值,则为非平稳序列。若1st difference的一阶差分时,变为平稳的,就是1阶单整,记为I(1),依次类推。
4.协整检验
得出两个相同的单整时间序列,P5 说明两时间序列存在接下来存在协整的可能。否则就不可能协整。
下面采用EG(Engle-Granger)两步法进行协整检验:
EG两步法,分两步。第一步,计算非均衡误差et,第二步,检验单整性。et为稳定序列则为协整。
操作:选取P4 ,P5 然后右键=》open=》as group。新窗口中点击proc=》make equation=》确定。得到等式。然后在新窗口中点击proc=》make residual series=》ok。从而得到残差项时间序列et。接着对该序列进行adf检验(如上所述)。若残差项平稳,则存在(1,1)阶协整。如果et为1阶单整,则变量Y,X为(2,1)阶协整。
2012年4月13日补充:需要注意的是:这里的DF或ADF检验是针对协整计算的残差项而非真正的非均衡误差,因此拒绝零假设的机会比实际情形大,所以临界值并非EVIEWS自带的参考值。参考临界值如下:
模型建立——时间序列 eviews协整检验(EG两步法(Engle-Granger))
另外,本文参照了高等教育出版社《计量经济学》文中并未提到EG两步法的第二步何时不存在协整。因此建议,可以采用jj检验,也就是在数据open as group后点击view==》点击cointegration test将直接显示协整检验的结果。图片如下,可以看到,红线处指出,是否存在协整关系。系数大小等信息都会在结果中显示出来。
模型建立——时间序列 eviews协整检验(EG两步法(Engle-Granger))
协整关系存在后,就可以建立误差修正模型(ECM)了。
为什么呢?因为Engle和Granger 1987年提出Granger表述定理:如果变量X与Y是协整的,他们之间的短期非均衡关系总能由一个误差修正模型表述。数据分析培训
但是多元的如何,这里还未了解。
回归模型中对变量取对数的作用是什么
问题是:在Include in test equation中,是否含有常数项、常数和趋势项、或二者都不包含,我应该选哪个?
回答说:
序列有非0均值,但没有时间趋势,选常数项;
序列随时间变化有上升或下降趋势,选常数和趋势项‘
序列在0均值上下波动,选二者都不包含。
————————————————————————————————
另外,个人现有一点不明,即ADF检验时,unit root test中,lag length这里应该怎么选,原因是什么?来龙去脉还未了解。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-09CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02