大数据加快健康险创新步伐
长期以来,我国商业健康险发展始终面临机遇与挑战并存的局面,一方面,人类健康多变性和财富积累驱使国人对健康的诉求加大,使得商业健康险发展前景良好。自2012年起,商业健康险增速开始超越寿险,2015年出现爆发式增长,原保费增长率高达51.87%。另一方面,高增速下的健康险业务却陷入持续亏损的尴尬局面。究其根本原因,就在于险企与医疗机构尚未结成完全的利益共同体,导致客户健康数据积累不足、赔付成本过高以及风控薄弱等问题凸显。因此,在“互联网+健康险”的发展趋势和大数据技术的助推下,商业健康险的运营效率和服务水平有望得到大幅提升。
健康险发展面临窘境
专家分析指出,目前我国健康险发展的窘境之一在于,信息化水平低下所导致的保险产品设计欠科学。健康险的成长历程,相对漫长的人类健康变化周期还很短暂,因此行业对于死亡率、发病率、住院率、治疗方案效果和医疗费用等基础数据的掌握和计算较为匮乏,产品险种单一且价格昂贵。还有产品设计相关的医疗服务类型、适宜人群、人均成本以及人均收益等数据也未获得精确测算。此外,保险公司间、保险公司与医疗结构间的信息共享欠缺影响了保费费率、理赔率的核定及保险产品创新。
窘境之二在于信息不对称和风控不利双压下的逆向选择和道德风险问题比较严重。保险公司对于投保群体质量的监控力薄弱,增加了自身理赔负担,而险企通常只能以提高费率来应对赔付支出的上涨,如此恶性循环引发投保人的逆向选择。购买商业健康险的被保人面临不同医疗方案或药品时通常则高而选,医院在利益最大化驱使下也会建议使用高费用方案或滥开药、开贵药。不但使得理赔成本居高不下且已造成20%至30%的医疗资源浪费。正是因为保险公司对于投保人健康信息的掌握不完全,医学知识过于专业且复杂,导致患者信息缺失以及保险公司和患者难以介入监督医院对于诊疗记录、检查单等档案资料的管理,严重影响商业健康险的发展。
医疗大数据介入保险
险企与医疗机构有机结合成利益共同体并在医疗大数据的助推下有望获得双赢。
有业内人士分析,在这种结合下,大数据挖据技术可以在“4R”即Right timing(对的时间)、Right location(对的地点)、Right people(对的人)、Right product(恰当的产品)节点中发挥最大效用。
首先,保险营销的最佳时间不应是在已患病者诊疗期间而是潜在病患进行医疗咨询的过程中,而医疗咨询的背后需要丰富的医院病历作为强大的数据来源。通过对病历的数据挖掘,可以整理出体征、症状、化验指标、影像检查标志物,与疾病之间的关联关系及与药品和手术等治疗手段之间的关联关系,形成所谓的医疗知识图谱。此外,医疗知识图谱也可以运用于核对诊断结果、用药和手术的合理性,实现诊断和治疗的全程核保,形成高精度风控。
其次,网络是当今最高效的营销平台,所以,在移动互联网大流量的入口提供免费医疗咨询,顺势推荐健康险产品便是选择了“对的地点”。
再次,通过医疗咨询可以收集用户的健康状况和病情信息,运用大数据技术进行深度分析,将准确的结果报告给客户,以赢得其对保险公司专业水平的信赖,为客户量身定制相关增值服务,做到精准推荐健康险产品。
最后,大数据技术可以从服务与定价方面提高健康险产品设计的科学性与合理性。不仅可以测算出在不同的当前健康状态下,未来罹患某种疾病的概率以及各类疾病的平均诊治费用,还可以从海量病历中,通过跟踪多位患者的病情发展,计算出疾病转化率,从而更准确地制订出某病种的报销额度以便合理给产品定价。
健康险模式亟待创新
另有专家预测,通过紧密结合医疗大数据、智能诊疗与健康险来实现赢利,是未来2至3年健康险模式探索之路上新的里程碑。
北京大数医达科技有限公司创始人邓侃表示,对于常见病的智能诊断和治疗,可以借助面向医生的智能临床助手或面向患者的智能自诊工具实现。对于慢性病的管理,许多保险机构参考国外经验,投资设立了远程监控系统,在患者家中捕捉临床数据,并传送给主治医生,以便及时捕捉危险信号。此类服务能帮助消费者预防疾病,而不只是在事后“亡羊补牢”。
目前国内市场上,已有多家保险机构将医疗大数据引入到健康险产品开发中。比如太保安联健康通过与阿里健康合作,将后者的大数据、风控引擎和人脸识别防作弊等技术融入理赔环节,形成行业控费的双保险安全体系。此举有助于公司改进产品定价及整个经营管理的决策。泰康在线通过对交易、社交、健康能力值等用户行为的大数据进行分析,目前已积累超过了8000万用户的多维度信息。并成立了远程在线顾问团队,可以基于大数据在线进行产品精准推荐。
大特保CEO周磊表示,要在数据分析中心的基础上,建立医疗服务平台、健康管理平台、保险服务平台,实现不同资源的实时互通。未来用户可通过大特保的平台,上传自己的健康数据、实时监测自己的健康指标、获取健康预警和解决方案。通过移动硬件进行日常健康管理,也可以在线问诊、预约医生,线下体检和就诊,后期还可在线远程复诊。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20