从大数据到信用数据信息共享
近年来,中国保险业积极顺应新形势、加快运用新技术、大胆探索新模式,互联网保险已经走上迅猛发展的快车道。整个“十二五”期间,互联网保费规模从2011年的32亿元飙升至2015年的2234亿元,增长约69倍,在保险业总保费中的比重从0.2%攀升至9.2%。与此同时,专业互联网保险公司试点不断增多。互联网保险已经成为中国保险业转型发展不可替代的重要驱动力。
尤其值得关注的是,诸多行业已经将大数据的创新应用上升为战略高度,作为大数据的使用者和生产者,保险业也不例外,互联网保险更是如此。大数据除了在完善客户行为分析、推动产品创新和精准定价、提升保险服务价值、创新保险营销模式外,还能够在一定程度上解决信息不对称造成的问题,提高保险公司的风控和反欺诈能力。未来保险行业最核心的竞争力将由大数据构成,保险业的产品设计、定价、营销策略、客户服务、风险控制和反欺诈等都会发生深刻变化,数据是保险业存在和发展的基石。
中国保险行业协会日前发布的《2016中国互联网保险行业发展报告》指出,传统保险主要基于保险公司精算能力以及客户数据进行保险产品开发和运营分析,而新兴技术比如区块链、人工智能、物联网、基因诊疗等,能够极大改变传统保险公司的成本结构,进而在为客户提供服务方面具有某种明显的优势,比如价格、服务质量、体验等方面,这种成本优势可以直接转化为保险公司的竞争优势。
风控方面。首先,保险公司可利用大数据收集由移动互联网及移动智能设备技术终端得到的关于被保险对象的综合信息,从而更好地把握客户所转嫁风险,进行有效的风险控制;其次,保险公司通过大数据技术将业务数据、管理数据、社会数据等各种数据整合分析后,提升内部管理能力,并且增强公司的风险防范能力。
反欺诈方面。保险公司通过外部数据实时获得客户以往的购买信息、理赔信息,确认客户是否购买超额保险,或重复保险,拒绝可能出现欺诈行为的客户;保险公司还可通过外部数据实时获得客户的出险信息,如客户在高速公路上驾车发生事故后向交警报案,保险公司就能够及时获得报案信息,或者从第三方直接获取客户的医疗、汽车维修等数据,防止保险欺诈的出现。
总之,大数据有助于保险公司更直接、更准确地了解市场、客户,精准定价和开发适宜的保险产品,提升客户的体验,加强内部管理等。其最终的结果是通过大数据的应用来扩大保险公司的盈利空间,而且促进优质客户群体的持续增长,从而形成良性循环。更值得一提的是,大数据的应用将加速互联网保险渠道向“业态”转化,即从保险产品的开发、保险信息咨询、保险计划书设计、销售到理赔等后期服务所有环节都依托互联网来完成,改变目前互联网更多是作为单纯的保险销售渠道的状况,实现互联网保险从“保险互联网化”的简单销售模式向真正的互联网保险“业态”的发展。
但是,尽管各家保险公司都掌握着庞大的数据,但目前保险公司的很多数据是相互独立的,对外也基本独立。即便有交互,也仅局限于小范围,这极不利于保险公司业务和反欺诈工作的开展。而数据信息共享可以使更多的机构更充分地使用已有数据资源,减少资料收集、数据采集等重复劳动和相应费用,而把精力重点放在开发新的应用程序及系统集成上。
中国互联网金融协会本着“服务会员、服务行业”的宗旨,努力推动互联网金融行业信用建设工作。协会作为独立第三方牵头搭建了互联网金融服务平台。打通不同机构间的“信息孤岛”,将信用数据有效的整合起来,作为传统征信的补充,依法合规的提供公正公平的互联网金融征信服务,实现信用信息充分运用。目前自平台正式开通仅一个月内,已收集信用数据近千万条。
据了解,协会下一步将积极推动“部门联动,社会协同”,建立完善“守信联合激励和失信联合惩戒制度”。会加大与最高人民法院以及各社会征信服务机构的合作,进一步扩大共享信息的覆盖面和应用范围,充分发挥共享平台的网络优势和规模效应。进而建立跨地区、跨部门、跨领域的联合激励与惩戒机制,真正做到让守信者受益、失信者受限,共同营造诚实守信的社会氛围,支持和帮助互联网金融企业降低风险成本,收获最大效益。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20