运营 | 如何“驾驭”数据分析
作为一个独立游戏开发者,在这里提出的一些观点可能早已听过无数遍。对一款游戏来说,分析是至关重要的!我们几乎要衡量每个指标!分析的关键在于快速识别游戏中存在的问题,以及应该怎样来改进它。我们所需要做的就是通过SDK库和代码来帮助我们获得胜利。
可能在大多数情况下,以上观点并没错(除了简单直白的“胜利”),不过我们的经验与分析表明,这结论似乎太草率了。难道没有让人出乎意料的事情吗?在这个过程中我们经常得出一些新颖的见解,其中一些经常会被我们遗漏,但这仍然是极具挑战性的。在这篇冗长的文章中,我将试着与大家分享关于Sharp Minds这款游戏的一些相关分析来与大家共同探讨。
1、“快餐”
对于那些没时间阅读整篇文章的朋友们,我在这里先放出一些“快餐”(觉得篇幅过长无心阅读的朋友们-可以直接跳到结论部分)
什么是分析
严格地说,“分析”是通过数据做出的有意义的见解。通常它是一个需要利用电脑完成的密集型计算过程。有时候,数据集有可能会非常巨大。计算能力的提升允许“分析”越来越多地应用在生活跟工作的各个方面。在这里,我们将专注于游戏分析,特别是手机游戏的分析。
在游戏产业中,分析通常是指记录关于玩家行为/游戏的重要数据并对其作出分析,发现在游戏中存在的各种问题及瓶颈。发现问题并通过游戏更新来纠正。而新的数据将会用于验证是否成功地解决了问题。
即使纠正问题并不是分析的一部分,我认为对游戏做出“治愈”是分析过程中一个至关重要的环节。没有它,分析几乎是浪费了开发时间。
让我们来纠正一些误解:
在游戏中进行分析意味着将一些平台的SDK集成到代码中。
NO,这只是分析过程中的一个简单步骤,仅仅是在一开始。
事件报告是琐碎的,仅在“开始阶段”、“结束阶段”以及一些类似事件发生的时候才发送
尽管可以使游戏几乎没有事件报告,然后处理所有计算中产生的数据集,有时候这会省去我们大量的时间以及简化一些工作,并且使报告更智能以及发送一些上下文数据。
比如:“开始阶段”事件可以包含关卡的尝试次数。如果没有关于玩家开始关卡的连续计算数据是很难得出结论的,有一点要很清楚,这是一种非常“奢侈”的分析统计计算。一开始在事件计算中就加入关卡尝试次数则会让这一过程简单很多。
如果我记录下每个可能在游戏中发生的事件,数据分析平台将会给我一些有价值的见解帮我改进游戏。
这可能是一种比较常见的误解。虽然数据分析平台有时会给出一些丰富而又华丽的图表像我们展示游戏中一些看起来比较明显的问题,但大多数是一些并没有什么实际意义的数据。我们很难提取一些可以帮助我们付诸实践的内容。最有挑战性的工作也正是在这里。
我并不需要现有的数据分析平台,我可以使用自己的服务器完全控制和处理这些数据。
“每件事都自食其力”通常对独立开发者来说是一个很大的问题。数据分析也不例外。数据分析的核心的确不是很复杂。只需通过一个RESTAPI或其他什么方法都系收集一些关键/有价值的数据,但是这在细节上要求的深度和广度都是超乎想象的;可行性、缩放比例、误差处理、估算、数据存储、冗余等等这些都是需要考虑在内的,而这将耗费大量的宝贵时间。
如果我得到的数据分析和图表是准确的,游戏中的瓶颈和问题将是显而易见的。
这的确是数据分析的目标。但是这需要大量的异常数据。下载数越少,数据就越不稳定。如果下载量是10次下载/天,这将是很难实现的,而且会导致一个错误的结果。想象一下如果有一个策略游戏。在策略入门的时候就已经很有特色,这将与那些墨守成规的策略游戏展现出完全不同的行为。每一个外部事件都会影响到数据。这个问题在得到稳定和相对数量级的数据或者新的有效安装方式时会相应减少。
当我解释这些例外情况的时候,剩下的分析数据将会给我一个明确的信息接下来要做什么。
并不一定。发现一个问题和知道造成这个问题的原因(因此能够想出适当的解决方案)之间还是存在一定的差距,我们不得不做出一些思考和猜测来弥补这个差距。比如,如果游戏中很多玩家在第四关的时候开始流失,很明显在这个关卡存在一个用户体验的问题。而我们仍然不知道这是什么造成的。现在如果我们去挖掘更深层次的原因,结果发现玩家们在几次尝试失败之后依然会流失。现在我们回头来看第四关的问题可能是因为难度太大或者这关的引导不能让玩家清晰的认识到该怎么做。当更深层次的挖掘不再是最优解的时候,我们只能靠猜,解决方案将基于我们最好的猜测,让我们在下一个版本里看看会发生什么。
报表数据中寻找信息是一个离散的计算过程
这不是我们应该关心的。数据分析主要是是关于统计学和或然率。我们不关心有多少玩家(或者百分比)在第四关的时候离开游戏。无论是80%还是75%-85%的信息,不要纠结于细枝末节的数字。我们要在数据分析和报告中找出来的是错误,而不是一个可能变化或者指数增长的不准确的数字结果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30