过年期间提升数据分析能力的靠谱方法
“过完年我要换个好工作!”很多同学在年前都立下如此雄心壮志为了实现这个美好的目标,春节期间应该怎么度过呢?
方案一:春节期间老把戏,胡吃海塞吹牛皮;钞票不见肥肉长,2月14空叹气。
点评:这个方案确实很经典,然而同学你确定这个方案和过完年换个好工作有关系?
方案二:保存一堆大V文章回家慢慢看。
点评:同学你确定春节期间开手机不是在抢红包,而是在认真学习???
方案三:带上一本《21天精通XXX编程语言》去旅行
点评:这个场景我们见过很多次了,买一本好书,立一个大Flag,然而假期回来书只翻了目录两页,然后被垫在电脑显示器下边了……
问题出在哪里?问题出在:
1. 已经毕业很多年,却仍期待有学校般的学习环境
2. 一提到提升就先想到提升技术,而节假日恰恰最不适合提升技术
先说问题1。一提到要提升能力,人们最容易联想到场景就是
l 一个安静的教室
l 一本已经编排好的课本
l 一支笔一个笔记本
l 一杯热茶一个滴答滴答的钟表
l 一道下午4点的金色阳光透过树荫照在黑板上
想象是美好的,现实是残酷的。在步入职场以后,大家都是就事论事,具体问题具体解决,日常要用到的知识点多且零碎,很少有人会整理出成体系的万能方法,很少有整片的时间去认真学习。比如春节,加上节前节后的工作空档期,是难得的学习好时间。如果还要玩过去的话,3月份招聘旺季开始可能就错过一些机会了。
所以,要坚决的破除“万事过万年以后再说”的幻想,认真准备!
再说问题2。数据分析能力提升到底提升的是什么?
数据分析师不只要负责提取数据,更重要的是分析。要把业务问题转化为可以用数据验证的假设,要收集数据证实假设,要在证实假设以后输出结论建议,因此数据分析师的能力至少包含三大层面:
1. 梳理问题
2. 整理数据
3. 输出结论
这三大层面中,梳理问题与输出结论是业务能力。简单来说就是:你怎么理解别人说的话,你怎么讲清楚自己想说的话。而整理数据,包括数据采集,统计计算,建立模型等等,是技术能力,需要根据数据需求,选择合适的方法,生产可用的数据,支持结论。
春节期间的环境,非常不适合技术能力的提升。技术能力提升,需要了解技术原理,需要实验素材,需要亲自动手,需要多次尝试。因此需要安静的环境与平稳的心情。而春节期间人在旅途,迎来送往,亲朋相聚,觥筹交错,吹牛拍马,环境太杂太乱,时间太碎片,心情也容易被突然抢到一个大红包,隔壁老王又来秀媳妇很漂亮等等干扰。所以为了保证质量,最好不要学技术类东西。
春节期间的环境非常适合业务能力的提升。
梳理问题:本质上是理解别人说的话。春节期间社交频繁,各类型,各层次的人都可以遇到。交谈有很多并且很容易涉及工作,婚姻等情况。与其被别人show财show官show恩爱气到半死,不如认真的观察对方,结合他的谈吐,衣着,移动端使用习惯,更加深刻的了解用户。思考:
1. 他是什么样的人?代表了什么阶层?
2. 他使用我们公司的什么业务?代表了什么需求?
3. 他的使用习惯是什么样的?会表现为哪些数据?
过节下来,大量的案例印在脑中,就会大大加深自己对于业务的理解。
输出结论:本质上是讲清楚自己的话。春节期间免不了,与其坐等别人催婚催孩催工作烦到大半死,不如认真考虑如何介绍自己,清晰的讲出:
1. 我是什么样的人?
2. 我做什么工作?创造什么价值?
3. 我的特长是什么?有什么优势?
你家二姑三舅之类人物听完,并且包含致敬的:嗯,高科技人才!那就说明介绍成功,说不定还介绍个妹纸什么的;如果听完一脸恍然大悟的:哦,私人电子厂搞电脑的;呵呵,哥们你还得努力提升一下。
这两个问题重要吗?当然重要!因为这六个问题,是做分析前后最需要理解和阐述的问题。有过跳槽经历的同学更知道,这六个问题,就是面对HR时,最需要搞清楚和最需要讲清楚的问题。不了解业务背景,不思考业务情况与数据表现之间的关系,不把数字转化为结论,最终只会落得一句:你就会跑数,不懂业务的评价。
所以过年期间可以努力提升这两方面能力,吹牛也是生产力,节后整理一下项目经验,对技术能力查漏补缺。3月份无论是谋求升职还是跳槽都会很有胜算的。数据分析培训
数据分析咨询请扫描二维码
统计学基础 - 理解统计学的基本概念和方法是数据分析师必备的技能之一。统计学为他们提供了处理数据、进行推断和建模的基础。 数 ...
2024-11-25数据分析师在如今信息爆炸的时代扮演着至关重要的角色。他们不仅需要具备扎实的数据分析技能,还需要不断学习和适应不断发展的技 ...
2024-11-25数据分析师的工作职责涉及多个关键方面,从数据的获取到处理、分析再到可视化,旨在为企业的决策提供有力支持。让我们深入了解数 ...
2024-11-25数据分析师:洞察力量的引擎 数据分析师的兴起 数据分析师行业目前正处于快速发展阶段,市场需求持续增长,薪资水平也有所提升。 ...
2024-11-25数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-25数据分析是当今社会中不可或缺的一项技能,涵盖了广泛的工具和技术。其中,掌握各种数据处理函数对于数据分析师至关重要。本文将 ...
2024-11-25“大数据治理”是一个涵盖广泛的复杂概念,其核心在于确保大规模、多样化的数据资源能够被有效管理和利用。不仅涉及数据的采集、 ...
2024-11-25一、引言 背景介绍 随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会的重要资产。大数据的兴起不仅推动了各行各业 ...
2024-11-25《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22