京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS分析技术:协方差分析;剔除工作经验的影响以后,学历对工资的影响依然显著吗
协方差分析是方差分析方法里非常重要的一个技术,特别适用于影响因素多,因素变量类型也多的情况。方差分析主要用于分析分类变量(因素)对因变量的影响,如下图所示,因素A和因素B都是分类变量。

分析连续型变量对因变量的影响需要用相关与回归分析。如果分类变量和连续型变量混合在一起分析,则方差分析和相关回归分析都不适用了。
协方差分析在这种情况下就派上用场了。将连续性变量设为协变量,扣除它对因变量的影响后,再用方差分析方法来分析分类变量对因变量的影响情况。当然,分类变量也可以作为协变量进行分析。
协方差分析原理
方差分析中,分析者无法判断和确定的变量(自变量)被称为协变量,能够确定对因变量有影响的分类因素被称为控制变量。协方差分析需要分析的内容有:控制变量对因变量的影响,协变量对因变量的影响,以及控制变量和协变量的关系。
协方差分析的基本思路:
将难以判断和确定是否对因变量有影响的因素作为协变量,也就是协助参考因素。
通过线性回归方法消除干扰因素的影响;
进行方差分析,将因变量的变化(总方差)归结为四种方差的加和:每个控制变量的独立影响、控制变量交互作用以后的影响、协变量的影响以及随机因素的影响。协方差分析在分析因变量时,扣除协变量影响的方差后,再分析控制变量对观测变量的影响,从而实现对控制变量效果的评价。
协方差分析是一种把直线回归或多元线性回归与方差分析结合起来的方法,多个协变量间相互独立,且与控制变量之间没有交互影响。只有一个协变量时,称为一元协方差分析;当有两个或两个以上的协变量时,称为多元协方差分析。
案例分析
本年继续沿用多因素方差分析的案例,多因素方差分析结果显示:学历对工资收入有显著影响,但是没有剔除工作年限,也就是工作经验对工资的影响,这显然是不合理的。用协方差分析,将工作年限设置为协变量,观察扣除工作年限影响后,学历是否仍然对工资有显著影响。
分析步骤
1、选择菜单【分析】-【一般线性模型】-【单变量】,将工资选为因变量;将学历和性别选为自变量,也就是固定因子;选择工作年限进入协变量框;如下图所示
2、模型设置;在指定模型中选择定制;在构建项里先选择主效应,将性别、学历和工作年限选中;然后再选择交互,将性别*工作年限*学历、学历*性别选为交互考察模型。
3、选项设置;单击选项,打开单变量:选项对话框,选中OVERALL,将其选入显示平均值。在输出中选中描述统计和功效估计。单击继续。
4、其它设置保持系统默认,点击确定,输出结果。
结果解释
由上表可知,工作年限作为主效应的F值为1.595,p值为0.207,大于0.05,表明工作年限对因变量工资的影响不显著。从偏Eta平方值,即R方值来看,工作年限的R方值为0.03,也就是工作年限因素只能解释因变量变异方差的0.6%,工作年限与工资的相关度很低。两组交互作用分析:性别*学历、性别*学历*工作年限都对工资没有显著影响。
在扣除了工作年限的影响以后,学历因素的F值为28.156,p值为0.000,小于0.05,说明学历依然对工资有显著影响。与此形成鲜明对比的是性别,在多因素方差分析中,性别虽然不及学历对工资的影响力,但是依旧有显著影响,在剔除了工作年限以后,性别的F值为0.705,p值为0.402,大于0.05,说明性别对工资的没有影响。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18