R语言解读自回归模型
时间序列是金融分析中常用到的一种数据格式,自回归模型是分析时间序列数据的一种基本的方法。通过建立自回归模型,找到数据自身周期性的规律,从而帮助我们理解金融市场的发展变化。
在时间序列分析中,有一个常用的模型包括AR,MA,ARMA,ARIMA,ARCH,GARCH,他们的主要区别是适用条件不同,且是层层递进的,后面的一个模型解决了前一个模型的某个固有问题。本文以AR模型做为开始,将对时间序列分析体系,进行完整的介绍,并用R语言进行模型实现。
由于本文为非统计的专业文章,所以当出现与教课书不符的描述,请以教课书为准。本文力求用简化的语言,来介绍自回归模型的知识,同时配合R语言的实现。
目录
自回归模型介绍
用R语言构建自回归模型
模型识别ACF/PACF
模型预测1. 自回归模型(AR)
自回归模型(Autoregressive model),简称AR模型,是统计上一种处理时间序列的方法,用来描述当前值与历史值之间的关系,用变量自身的历史时间数据对自身进行预测,自回归模型必须满足平稳性的要求。比如,时间序列数据集X 的历史各期数据从X1至Xt-1,假设它们为线性关系,可以对当期Xt的表现进行预测。X的当期值等于一个或数个落后期的线性组合,加常数项,加随机误差。
p阶自回归过程的公式定义:
字段解释:
Xt是当期的X的表现
c是常数项
p是阶数,i为从1到p的值
φi是自相关系数
t为时间周期
εt是均值为0,标准差为δ 的随机误差,同时δ是独立于t的
对于一阶自回模型,用AR(1)来表示,简化后的公式为:
自回归是从线性回归分析中发展而来,只是把自变量x对因变量y的分析,变成自变量x对自身的分析。如果你需要了解线性回归的知识,请参考文章R语言解读一元线性回归模型。
自回归模型的限制
自回归模型是用自身的数据来进行预测,但是这种方法受到一定的限制:
必须具有平稳性,平稳性要求随机过程的随机特征不随时间变化。
必须具有自相关性,如果自相关系数(φi)小于0.5,则不宜采用,否则预测结果极不准确。
自回归只适用于预测与自身前期相关的现象,即受自身历史因素影响较大的现象。对于受其他因素影响的现象,不宜采用自回归,可以改用向量自回归模型。
平稳性时间序列的特点
平稳性要求产生时间序列Y的随机过程的随机特征不随时间变化,则称过程是平稳的;假如该随机过程的随机特征随时间变化,则称过程是非平稳的。
平稳性是由样本时间序列所得到的拟合曲线,在未来的一段期间内能顺着现有的形态能一直地延续下去;如果数据非平稳,则说明样本拟合曲线的形态不具有延续的特点,也就是说拟合出来的曲线将不符合当前曲线的形态。
对于平稳时间序列在数学上有比较丰富的处理手段,非平稳的时间序列通过差分等手段转化为平稳时间序列处理
了解了自回归模型的定义,我们就可以用R语言来模拟一下自回归模型的构建和计算过程。
生成一个随机游走的数据集,满足平稳性的要求。
# 随机游走的数据集> set.seed(0)> x<-w<-rnorm(1000) # 生成符合正态分布N(0,1)的数据> for(t in 2:1000) x[t]<-x[t-1]+w[t]> tsx<-ts(x) # 生成ts时间序列的数据集# 查看数据集> head(tsx,15) [1] 1.2629543 0.9367209 2.2665202 3.5389495 3.9535909 2.4136409 [7] 1.4850739 1.1903534 1.1845862 3.5892396 4.3528331 3.5538238[13] 2.4061668 2.1167053 1.8174901> plot(tsx) # 生成可视化图形 > a<-ar(tsx);a # 进行自回归建模Call:ar(x = tsx)Coefficients: 1 0.9879 Order selected 1 sigma^2 estimated as 1.168
数据的如图展示:
自相关系数为0.9879 ,这是一个非常强的自相关性,所以上述的数列符合自相关的特性。
R语言中ar()函数提供了多种自相关系数的估计,包括"yule-walker", "burg", "ols", "mle", "yw",默认是用yule-walker方法,常用的方法还有最小二乘法(ols),极大似然法(mle)。
我们用最小二乘法,来进行参数估计。
> b<-ar(tsx,method = "ols");bCall:ar(x = tsx, method = "ols")Coefficients: 1 0.9911 Intercept: -0.017 (0.03149) Order selected 1 sigma^2 estimated as 0.9906
用最小二乘法的计算结果,则自相关系统数为0.9911,截距为-0.017。只有使用最小二乘法进行参数估计的时候,才会有截距。
我们用极大似然法,来进行参数估计。
> d<-ar(tsx,method = "mle");dCall:ar(x = tsx, method = "mle")Coefficients: 1 0.9904 Order selected 1 sigma^2 estimated as 0.9902
用极大似然法计算结果,则自相关系统数为0.9904。对于上面3种估计方法,自相关系数的值都是很接近的。
3. 模型识别ACF/PACF
在上面的例子中,我们默认是用一阶的自回归模型AR(1),进行程序实现的。在实际应用中,自回归模型AR时间序列的阶数P是未知的,必须根据实际数据来决定,就要对AR模型定阶数。常的方法就是利用自相关函数(ACF)和偏自相关函数(PACF)来确定自回归模型的阶数。在ACF/PACF不能确定的情况下,还需要用AIC(Aikaike info Criterion)、BIC(Bayesian information criterion)的信息准则函数来确定阶数。
自回归模型的确立过程,是通过确定阶数,参数估计,再次确定阶数的方法进行判断。自相关函数ACF,用来确定采用自回归模型是否合适。如果自相关函数具有拖尾性,则AR模型为合适模型。偏自相关函数PACF用来确定模型的阶数,如果从某个阶数之后,偏自相关函数的值都很接近0,则取相应的阶数作为模型阶数,偏自相关函数通过截尾性确定阶数。
1. 自相关函数ACF(autocorrelation function)
将一个有序的随机变量序列与其自身相比较,这就是自相关函数在统计学中的定义。每个不存在相位差的序列,都与其自身相似,即在此情况下,自相关函数值最大。如果序列中的组成部分相互之间存在相关性(不再是随机的),则由以下相关值方程所计算的值不再为零,这样的组成部分为自相关。
自相关函数反映了同一序列在不同时序的取值之间的相关程序。
ACF的公式为:
字段解释
Pk,为ACF的标准误差
t,为数据集的长度
k,为滞后,取值从1到t-1,表示相距 k个时间间隔的序列值之间的相关性
Yt,为样本在t时期的值
Yt-k,为样本在t-k时期的值
μ,为样本的均值
所得的自相关值Pk的取值范围为[-1,1],1为最大正相关值,-1则为最大负相关值,0为不相关。
根据上面公式,我们可以手动计算出tsx数据集的ACF值
> u<-mean(tsx) #均值> v<-var(tsx) #方差> # 1阶滞后> p1<-sum((x[1:length(tsx)-1]-u)*(x[2:length(tsx)]-u))/((length(tsx)-1)*v);p1[1] 0.9878619> # 2阶滞后> p2<-sum((x[1:(length(tsx)-2)]-u)*(x[3:length(tsx)]-u))/((length(tsx)-1)*v);p2[1] 0.9760271> # 3阶滞后> p3<-sum((x[1:(length(tsx)-3)]-u)*(x[4:length(tsx)]-u))/((length(tsx)-1)*v);p3[1] 0.9635961
同时,我们可以用R语言中的acf()函数来计算,会打印前30个滞后的ACF值。
> acf(tsx)$acf, , 1 [,1] [1,] 1.0000000 [2,] 0.9878619 [3,] 0.9760271 [4,] 0.9635961 [5,] 0.9503371 [6,] 0.9384022 [7,] 0.9263075 [8,] 0.9142540 [9,] 0.9024862[10,] 0.8914740[11,] 0.8809663[12,] 0.8711005[13,] 0.8628609[14,] 0.8544984[15,] 0.8462270[16,] 0.8384758[17,] 0.8301834[18,] 0.8229206[19,] 0.8161523[20,] 0.8081941[21,] 0.8009467[22,] 0.7942255[23,] 0.7886249[24,] 0.7838154[25,] 0.7789733[26,] 0.7749697[27,] 0.7709313[28,] 0.7662547[29,] 0.7623381[30,] 0.7604101[31,] 0.7577333
比较前3个值的计算结果,与我们自己的计算结果是一样的,同时可以用R语言进行可视化输出。
> acf(tsx)
从上图中看出,数据的ACF为拖尾,存在很严重的自相关性。接下来,这时候我们用偏自相关函数确定一下AR的阶数。
2. 偏自相关函数(PACF)(partial autocorrelation function)
偏自相关函数是有自相关函数推到而来。对于一个平稳AR(p)模型,求出滞后k自相关系数p(k)时,实际上得到并不是x(t)与x(t-k)之间单纯的相关关系。因为x(t)同时还会受到中间k-1个随机变量x(t-1)、x(t-2)、……、x(t-k+1)的影响,而这k-1个随机变量又都和x(t-k)具有相关关系,所以自相关系数p(k)里实际掺杂了其他变量对x(t)与x(t-k)的影响。
为了能单纯测度x(t-k)对x(t)的影响,引进偏自相关系数的概念。对于平稳时间序列{x(t)},所谓滞后k偏自相关系数指在给定中间k-1个随机变量x(t-1)、x(t-2)、……、x(t-k+1)的条件下,或者说,在剔除了中间k-1个随机变量x(t-1)、x(t-2)、……、x(t-k+1)的干扰之后,x(t-k)对x(t)影响的相关程度。
简单来说,就是自相关系数ACF还包含了其他变量的影响,而偏自相关系数PACF是严格这两个变量之间的相关性。在ACF中存在着线性关系和非线性关系,偏自相关函数就是把线性关系从自动关系性中消除。当PACF近似于0,表明两个时间点之间的关系性是完全由线性关系所造成的。
通过R语言的pacf()函数来进行偏自相关函数计算。
> pacf(tsx)$acf, , 1 [,1] [1,] 0.987861891 [2,] 0.006463542 [3,] -0.030541593 [4,] -0.041290415 [5,] 0.047921168 [6,] -0.009774246 [7,] -0.006267004 [8,] 0.002146693 [9,] 0.028782423[10,] 0.014785187[11,] 0.019307564[12,] 0.060879259[13,] -0.007254278[14,] -0.004139848[15,] 0.015707900[16,] -0.018615370[17,] 0.037067452[18,] 0.019322565[19,] -0.048471479[20,] 0.023388065[21,] 0.027640953[22,] 0.051177900[23,] 0.028063875[24,] -0.003957142[25,] 0.034030631[26,] 0.004270416[27,] -0.029613088[28,] 0.033715973[29,] 0.092337583[30,] -0.031264028# 可视化输出 > pacf(tsx)
从上面的这个结果分析,当滞后为1时AR模型显著,滞后为其他值是PACF的值接近于0不显著。所以,对于数据集tsx来说,数据满足AR(1)的自回归模型。对于上文中参数估计出的1阶自相关系数值是可以用的。
4. 模型预测
通过模型识别,我们已经确定了数据集tsx是符合AR(1)的建模条件的,同时我们也创建了AR(1)模型。接下来,就可以利用这个自回测的模型的进行预测,通过规律发现价值。在R语言中,我们可以用predict()函数,实现预测的计算。
使用AR(1)模型进行预测,并保留前5个预测点。
> predict(a,10,n.ahead=5L)$predTime Series:Start = 2 End = 6 Frequency = 1 [1] 9.839680 9.681307 9.524855 9.370303 9.217627$seTime Series:Start = 2 End = 6 Frequency = 1 [1] 1.080826 1.519271 1.849506 2.122810 2.359189
上面结果中,变量$pred表示预测值,变量$se为误差。
我可以生成可视化的图,更直观的看到预测的结果。
# 生成50个预测值 > tsp<-predict(a,n.ahead=50L)# 把原数据画图 > plot(tsx)# 把预测值和误差画出来> lines(tsp$pred,col='red') > lines(tsp$pred+tsp$se,col='blue')> lines(tsp$pred-tsp$se,col='blue')
图中,黑色线为原始数据的,红色线为预测值,蓝色线为预测值的范围。这样我们就利用AR(1)模型,实现了对规律的预测计算。
上面关于预测和可视化的过程,我们是通过原生的predict()函数和plot()函数完成的。在R语言中,可以用forecast包来简化上面的操作过程,让代码更少,操作更便捷。
# 加载forecast包> library('forecast')# 生成模型AR(1) > a2 <- arima(tsx, order=c(1,0,0))> tsp2<-forecast(a2, h=50)> plot(tsp2)
查看forecast()计算后的预测结果。
> tsp2 Point Forecast Lo 80 Hi 80 Lo 95 Hi 951001 -15.71590 -16.99118 -14.440628 -17.66627 -13.76553691002 -15.60332 -17.39825 -13.808389 -18.34843 -12.85820921003 -15.49181 -17.67972 -13.303904 -18.83792 -12.14569661004 -15.38136 -17.89579 -12.866932 -19.22685 -11.53587261005 -15.27197 -18.06994 -12.474000 -19.55110 -10.99284321006 -15.16362 -18.21425 -12.112996 -19.82915 -10.49809221007 -15.05631 -18.33593 -11.776682 -20.07206 -10.04055411008 -14.95001 -18.43972 -11.460312 -20.28705 -9.61297501009 -14.84474 -18.52891 -11.160567 -20.47919 -9.21028461010 -14.74046 -18.60591 -10.875013 -20.65216 -8.82876731011 -14.63718 -18.67257 -10.601802 -20.80877 -8.46559941012 -14.53489 -18.73030 -10.339486 -20.95121 -8.11857231013 -14.43357 -18.78024 -10.086905 -21.08123 -7.78591741014 -14.33322 -18.82333 -9.843112 -21.20026 -7.46619031015 -14.23383 -18.86034 -9.607319 -21.30947 -7.15819231016 -14.13538 -18.89190 -9.378864 -21.40985 -6.8609139
通过forecast()函数,直接生成了Forecast值,80%概率的预测值范围,和95%概率的预测值范围。
在明白了整个自回归模型的设计思路、建模过程、检验条件、预测计算、可视化展示的完整操作后,我们就可以真正地把自回归模型用到实际的业务中。发现规律,发现价值!!
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20