R语言对回归模型进行回归诊断
在R语言中,对数据进行回归建模是一件很简单的事情,一个lm()函数就可以对数据进行建模了,但是建模了之后大部分人很可能忽略了一件事情就是,对回归模型进行诊断,判断这个模型到低是否模型的假定;如果不符合假定,模型得到的结果和现实中会有巨大的差距,甚至一些参数的检验因此失效。
因为在对回归模型建模的时候我们使用了最小二乘法对模型参数的估计,什么是最小二乘法,通俗易懂的来说就是使得估计的因变量和样本的离差最小,说白了就是估计出来的值误差最小;但是在使用最小二乘法的前提是有几个假设的。
这里我就引用《R语言实战》的内容了,在我大学中的《计量经济学》这本书讲的更为详细,不过这里主要是介绍使用R语言对模型进行回归诊断,所以我们就不说太详细了;
假定
正态性:对于固定的自变量值,因变量值成正态分布,也就是说因变量的是服从正态分布的
独立性:Yi值之间相互独立,也就是说Yi之间不存在自相关
线性:因变量和自变量是线性相关的,如果是非线性相关的话就不可以了
同方差:因变量的方法不随着自变量的水平还不同而变化,也可称之为同方差
为了方便大家使用和对照,这里就使用书上的例子给大家介绍了,在系统自带的安装包中women数据集,我们就想通过身高来预测一下体重;在做回归诊断之前我们得先建模;
首先我们先看一下数据是长什么样子的,因为我们不能盲目的拿到数据后建模,一般稍微规范的点流程是先观察数据的分布情况,判断线性相关系数,然后在考虑是否建立回归模型,然后在进行回归诊断;
R代码如下:
data(‘women’)
women
结果如下
初步观察数据大概告诉我们体重就是跟随着身高增长而增长的,再通过画一下散点图观察。
R代码如下
plot(women)
然后我们在判断一下各个变量之间的线性相关系数,然后再考虑要不要建模
R代码如下
cor(women)
结果如下
从相关系数的结果上看,身高和体重的相关程度高达0.9954,可以认为是完全有关系的。
根据以上的判断我们认为可以建立模型去预测了,这时候我们使用LM()函数去建模,并通过summary函数去得到完整的结果。
R代码如下
model <- lm(weight~height,data=women)
summary(model)
出现这个问号原因是由于电脑字符集问题;稍微解读一下这个结果,RESIDUALS是残差的五分位数,不知道五分位的可以百度一下,这里不多说,下面的结果height的回归系数是3.45,标准差是0.09114,T值为37.85,P值为1.09e-14,并显著通过假设检验,残差的标准差为1.525,可决系数为0.991,认为自变量可以解释总体方差的99.1%,调整后的可决系数为0.9903,这是剔除掉自变量的个数后的可决系数,这个比较有可比性,一般我都看这个调整后的可决系数。结果就解读那么多,因此得到的结果就是
上面只是借用了一个小小例子来讲解了一下R语言做回归模型的过程,接下来我们将一下如何进行回归诊断,还是原来的那个模型,因为使用LM函数中会有一些对结果评价的内容,因此我们用PLOT函数将画出来;
R代码如下
par(mfrow=c(2,2))
plot(model)
结果如下
左上:代表的残差值和拟合值的拟合图,如果模型的因变量和自变量是线性相关的话,残差值和拟合值是没有任何关系的,他们的分布应该是也是在0左右随机分布,但是从结果上看,是一个曲线关系,这就有可能需要我们家一项非线性项进去了
右上:代表正态QQ图,说白了就是标准化后的残差分布图,如果满足正态假定,那么点应该都在45度的直线上,若不是就违反了正态性假
左下:位置尺度图,主要是检验是否同方差的假设,如果是同方差,周围的点应该随机分布
右下:主要是影响点的分析,叫残差与杠杆图,鉴别离群值和高杠杆值和强影响点,说白了就是对模型影响大的点
根据左上的图分布我们可以知道加个非线性项,R语言实战里面是加二次项,这里我取对数,主要是体现理解
R代码如下
model1 <- lm(weight~height+log(height),data=women)
plot(model1)
summary(model1)
结果如下
诊断图
模型拟合结果图
综合起来我们新模型貌似更优了;我就介绍到这里,具体大家可以看书籍
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-3001专家简介 徐杨老师,CDA数据科学研究院教研副总监,主要负责CDA认证项目以及机器学习/人工智能类课程的研发与授课,负责过中 ...
2025-01-29