
R语言读取Excel文件的各种方法
最近初学R语言,在R语言读入EXCEL数据格式文件的问题上遇到了困难,经过在网上搜索解决了这一问题,下面归纳几种方法,供大家分享:
第一: R中读取excel文件中的数据的路径:
假定在您的电脑有一个 excel 文件,原始的文件路径是: D:workdata1
如果直接把这个路径拷贝到R中,就会出现错误,原因是:
是escape character(转义符),\才是真正的字符,或者用/
因此,在R中有两种方法读取该路径:
1:在R中输入一下路径: D:\work\data\1 2:在R中输入一下路径: D:\work\data\1 第二: R中读取excel文件中的数据的方法 :
read.table(),read.csv(),read.delim()直接读取EXCEl文件时,都会遇到一下问题:“在读取‘.xls’的TableHeader时遇到不完全的最后一行”。解决的方法有以下几种:假如文件1.1中是一个6乘以2的矩阵,元素为:
方法1: xls另存为csv格式然后用read.csv :
具体过程如下:
> data<-read.csv("D:\work\data\1.csv") > data X1 X23 1 2 24 2 3 25 3 4 26 4 5 27 5 6 28 > data<-read.csv("D:\work\data\1.csv",header = F) > data V1 V2 1 1 23333 2 2 24 3 3 25 4 4 26 5 5 27 6 6 28 > data<-read.csv("D:\work\data\1.csv",header = T) > data X1 X23333 1 2 24 2 3 25 3 4 26 4 5 27 5 6 28 也就是说 header = T(TURE)是默认的状态 ,在这默认状态下,输出的data矩阵是一个5乘以2的矩阵,第一行作为了data的名字,如果 header = F(FALSE), 则会现实原始的矩阵结果。
方法2: xls另存为txt格式然后用read.table : 如例子所示:
> data<-read.table("D:\work\data\1.txt",header = T) > data X1 X23 1 2 24 2 3 25 3 4 26 4 5 27 5 6 28
> data<-read.table("D:\work\data\1.txt",header = F) > data V1 V2 1 1 23 2 2 24 3 3 25 4 4 26 5 5 27 6 6 28 方法3:打开EXCEL,全选里面的内容,点击复制,然后在R中输入一下命令:数据分析培训
data <- read.table("clipboard", header = T, sep = 't') 结果如下所示:
> data <- read.table("clipboard", header = T, sep = 't') > data X1 X23 1 2 24 2 3 25 3 4 26 4 5 27 5 6 28 > data <- read.table("clipboard", header = F, sep = 't') > data V1 V2 1 1 23 2 2 24 3 3 25 4 4 26 5 5 27 6 6 28 使用这种方法的时候一定要注意复制!剪切板里面没有内容是无法运行的!以上是三种方法,如果还有别的更好的,请大家补充,谢谢!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08